Gene Editing: Zwischen Faszination und Erschrecken über ungeahnte Möglichkeiten. Wohin soll der Weg gehen?

Noch während über ein Moratorium debattiert wird, schlagen die Meldungen aus China ein: Dort ist man einen Schritt weiter. Ist es der entscheidende Schritt? Nicht nur das interessierte Publikum dürfte vom Tempo überrannt sein – kaum jemand weiß so richtig, was Gene-Editing ist, da hört man schon, dass chinesische Wissenschaftler bereits erste Experimente an menschlichen Embryonen durchgeführt haben. Zwar wurden dafür nicht lebensfähige Embryonen benutzt, die im Rahmen künstlicher Befruchtungen entstanden – eine Grenze ist damit dennoch überschritten. Der federführende Wissenschaftler Junjiu Huang gibt eine nüchterne Erklärung ab: „Wir wollten der Welt unsere Daten zeigen, damit jeder weiß, was wirklich passiert bei diesem Modell, statt nur darüber zu reden, was wohl passieren würde, ohne dass jemand Daten hat.“

Doch zunächst einen Schritt zurück – was ist Gene-Editing? Und was sagt eine der führenden Wissenschaftlerinnen auf diesem Gebiet dazu? Jennifer Doudna, die die sogenannte CRISPR/Cas 9 Methode entscheidend mitentwickelt hat, ist eine derer, die dringend eine Diskussion anraten: Welcher Missbrauch ist möglich und wofür wollen Wissenschaft und Gesellschaft sie nutzen. Doudna erlebt dabei das klassische Dilemma einer Verantwortlichkeit für einen Durchbruch, dessen rein wissenschaftlicher Fortschritt eine auch gesellschaftliche Herausforderung bedeutet. Zwar konnten Biologen schon länger das Genom manipulieren – eine Revolution ist CRISPR, weil es, zumindest theoretisch, eine so einfache und kostengünstige Möglichkeit darstellt. „Die Grundlage ist ein Enzym namens Cas9, das mit Hilfe eines kurzen RNA-Schnipsels, der so genannten guide RNA, an seine Ziel-DNA geleitet wird. Dort schneidet es die DNA, wobei Gene zerstört oder gewünschte Sequenzen eingefügt werden können“.

Eine Hoffnung die Entwicklung zu verlangsamen, um eine breit angelegte Diskussion führen zu können, gibt es: Das chinesische Team erzielte keine zufriedenstellenden Ergebnisse. Stoppen aber lassen dürfte sich die weltweite Forschung kaum mehr. Das US National Health Institute hat zwar die Förderung für solche Projekte eingefroren, aber die Verlockungen dürften zu groß sein. Denn krankmachende Gene schlicht zu entfernen und in der Zukunft beispielsweise erblich bedingte Krankheiten komplett aus der Vererbungskette zu löschen, ist zweifelsfrei eine große Vision.

Was das aber zu Ende gedacht bedeuten könnte, kennen wir aus Science Fiction. Die Schicksalsfrage lautet dann: Krankheiten heilen versus Menschen bereits als Embryos zu optimieren.

Entsprechend gespannt erwarteten die Zuhörer heute die Diskussion zum Thema „Human genetic alteration: does the pause have a purpose?“ mit Elisabeth Blackburn, Michael Bishop, Richard J. Roberts und dem Young Scientist Simon Elsässer.

 

Press Talk mit Simon Elsässer, J. Michael Bishop, Elizabeth Blackburn und Richard J. Roberts (von links nach rechts), Foto: LNLM

Press Talk mit Simon Elsässer, J. Michael Bishop, Elizabeth Blackburn und Richard J. Roberts (von links nach rechts), Foto: LNLM

 

Kurz zum Forschungshintergrund der Diskussionsteilnehmer: Blackburn erhielt zusammen mit Carol Greider und Jack Szostak 2009 den Nobelpreis in Medizin unter großer medialer Anteilnahme, da ihre Entdeckung der Telomerase mit der Entdeckung des biologischen „Jungbrunnen“ assoziiert wurde, denn die Länge der Telomere steht in Verbindung zum Alterungsprozess. J. Michael Bishop ist einer der Entdecker des zellulären Ursprungs der retroviralen Krebsgene und dieses Jahr zusammen mit Harold Varmus in Lindau, mit dem er 1989 den Nobelpreis in Medizin erhielt. Weiter auf dem Podium: Richard J. Roberts, Medizin-Nobelpreisträger von 1993, der einen Vortrag zum Thema Golden Rice und dem Verhängnis einer seiner Meinung nach falschen politischen Diskussion zum Thema Gentechnik bei Lebensmitteln halten wird (A Crime against Humanity). Und last but not least Simon Elsässer, der auf dem Gebiet der Epigenetik forscht und sein Lab am Karolinska Institutet in Stockholm, Schweden, betreibt.

Eines wurde durch die Statements der Wissenschaftlerin und der Wissenschaftler schnell klar – sie selbst sehen keine der bereits diskutierten Zukunftsvisionen auch nur in Reichweite. Die Technik sei viel zu schlecht, die Fehlerraten und Probleme zu hoch. Doch dann scheiden sich die Geister. Während Simon Elsässer meint, der Versuch an den Embryonen hätte nicht stattfinden sollen – denn es war klar, dass nichts Vernünftiges dabei herauskommen konnte – sieht Bishop darin keinen Grund, einen solchen Versuch nicht zu unternehmen. Blackburn hält die Technik nicht für so einen großen Durchbruch, wie es dargestellt wird und beantwortet die Frage, ob die Methode nicht Tür und Tor für den Missbrauch bietet, damit, dass einem vor Menschen mit verbrecherischen Absichten auch keine gesetzlichen Regelungen schützen. Roberts hält diese Technik nur für medizinische Zwecke für legitim und vermutet, dass es neue Methoden geben wird, die Wissenschaft sich also auf diesem Gebiet im Übergang befände. Bei der Diskussion über den Sinn eines Moratoriums gibt Roberts zu bedenken, dass die Entwicklung so rasch voranschreitet, die Institutionen zu langsam reagieren und die wissenschaftliche Community deshalb dringend den Dialog mit den chinesischen Wissenschaftlern suchen sollte – es wäre gefährlich die Entwicklung dort einfach zu ignorieren. Internationaler Austausch zum Thema wird also dringend benötigt. Bishop könnte sich auch ein Internationales Abkommen vergleichbar dem, das aus der Stammzellen-Diskussion hervorging, vorstellen.

65th Lindau Nobel Laureate Meeting, Lindau, Germany, Picture/Credit: Adrian Schröder/Lindau Nobel Laureate Meetings, 29 June 2015 Elizabeth Blackburn, Michael Bishop, Richard Roberts, Presstalk at Forum am See No Model Release. No Property Release. Fre

Diskussion im “Forum am See” mit gespanntem Publikum; Foto: LNLM

Alle Beteiligten der Podiumsdiskussion denken, dass der Hype um CRISPR aus der Tatsache resultiert, dass diese Methode so einfach und kostengünstig ist. Dafür aber eben auch zu ungenau – und die daraus entstehenden „off-target-Effekte“ sind noch nicht verstanden. Elsässer plädiert dafür, so lange es so viele Unwägbarkeiten gibt, beim Maus-Modell zu bleiben.

Die Wissenschaftscommunity sollte für Transparenz sorgen und die Presse sachlich über die neue Technik und ihre Begrenzungen berichten, um Ängste abzubauen. In diesem Sinne werden wir weiter zum Thema berichten.

The Courage to Venture Beyond: Of Polymaths and Multidisciplinarians

Correspondence to:

Jalees Rehman

Department of Medicine and Department of Pharmacology

University of Illinois at Chicago

Email: jalees.rehman[at]gmail[dot]com

 

GoetheColorWheel

Goethe’s symmetric colour wheel with associated symbolic qualities (1809): – Public Domain Image

 

“Focus! Focus! Focus! Create a narrow area of scientific expertise in which you excel and develop a national or international reputation for excellence!”

Established scientists often share this sort of advice with their younger peers who are about to embark on their academic career. It isn’t a bad advice and I have known many scientists who have succeeded in academia by following it. Every day, more than a thousand original scientific papers are published. A major aspect of scientific research is placing your own findings into context of already existing knowledge. How is your work different from what is already known? What impact will your work have in your scientific field? Have you developed a new tool or concept that will be of significant value to your peers? To engage in cutting-edge research therefore requires that one stays abreast of the amassing scientific literature, carefully curating which of the numerous published findings are most relevant to one’s own work.

A scientist with too broad of an area of scientific expertise or too many distinct scientific interests may drown in the ocean of newly generated knowledge. Keeping up with the scientific literature and actively conducting experiments in multiple scientific disciplines may  take up so much effort that it leaves little time and resources to dig deeply and unearth high-impact knowledge in any one area.

Some scientists devote decades of research to studying a single protein in a cell. Considering the complexity of biological phenomena, a single protein X can supply a seemingly inexhaustible reservoir of research questions. How is the synthesis of the protein regulated? Which molecular pathways lead to the degradation of the protein? Which are the proteins that interact with X? Are there specific environmental signals which control the expression of the gene which is transcribed and translated into protein X? How does a transgenic mouse behave when protein X levels are over-expressed in selected organs or tissues? Answering each one of these questions by carefully interrogating all the detailed molecular mechanisms involved can take several years. A scientist who uses her creativity and perseverance in order to develop unique molecular tools and animal models to address these questions will likely receive national or international recognition and a steady stream of research funding for her expertise in all matters relating to protein X.

Yet there are a number of scientists who forsake this traditional path. Such a scientist may start out studying protein X in a cell but after discovering that biomechanical forces regulate the levels of protein X, shift the focus of her research to cellular biomechanics. Her work on biomechanics may then lead to the engineering of novel devices and tools to control biomechanical forces, to pursue broader questions regarding how cells sense mechanical forces and even address philosophical questions about the validity of applying physical concepts of force and tension to biological systems. Protein X may have been the initial trigger for the research but as her research progresses, her interests become broader and integrate various disciplines ranging from molecular biology to engineering and biophysics and protein X may just become a distant memory. Such a multidisciplinary path comes with a greater risk of failure because the scientist will not have any circumscribed area of expertise on which to build an academic reputation and because every transition from one discipline to another requires that the scholar devote an extraordinary amount of effort to acquiring skills and knowledge in the new discipline. But the potential for ground-breaking discoveries is also greater because the scholar’s checkered background and intellectual diversity could lead to a cross-fertilization of ideas from various disciplines and create a whole new area of research.

Polymaths and Multidisciplinarians

According to the Oxford English Dictionary, the expression “polymath” refers to “a person of great or varied learning; a person acquainted with many fields of study; an accomplished scholar”. This is a rather broad definition which does not give any specific guidelines as to what qualifies as being “acquainted with many fields of study”. Does one need formal academic training in multiple areas of study to be considered a polymath? Is it a requirement to make original and creative contributions to a multiple disciplines? Perhaps even garner national and international recognition?

When prompted to name individuals who are polymaths, people educated in the European tradition often associate “polymaths with the Renaissance because that era symbolizes the integration of the arts, humanities and sciences and has led to “Renaissance man” being used as a synonym for polymath. Leonardo da Vinci (1452-1519) is a prime example of such a polymath, known not only for his paintings such as The Last Supper and the Mona Lisa, but also his numerous inventions and innovative designs of flying machines as well as his extensive anatomical studies based on the dissection of human corpses.

 

Studies of the Embryo by Leonardo da Vinci: Photography by Luc Viatour via Wikimedia Commons

Studies of the Embryo by Leonardo da Vinci: Photography by Luc Viatour via Wikimedia Commons

The German poet Johann Wolfgang von Goethe (1749-1832) is also a front-runner in the pantheon of polymaths because of his interests in geology, paleontology and optics. During his lifetime, Goethe assembled one of the largest collections of rocks, minerals and fossils ever owned by an individual person, consisting of 18,000 specimens! Even though he is revered as the greatest poet of the German language, Goethe’s longest published work is his treatise on a theory of color, the Farbenlehre. He devoted two decades of his life to studying light and he thought that this 1000-page tome would be his most meaningful contribution to humankind.
In the Farbenlehre, Goethe vehemently disagreed with Newton about the nature of light. According to Newton, white light was a heterogeneous composite of colors and darkness was the absence of light. Goethe, on the other hand, felt that white light was a homogenous entity and that darkness was the polar opposite of light and not just its absence. Goethe also ascribed aesthetic qualities to specific colors such as “beautiful” to red and “useful” to green.

Goethe’s theory of color is not a scientific theory in the conventional sense because it did not offer any clear scientific hypotheses that could be tested and falsified by experiments. This did not prevent Goethe from viciously attacking Newton and those who accepted the Newtonian theory of light and color. In fact a whole portion of Goethe’s Farbenlehre is titled “Polemics” and attempts to document the incompetence and errors of Newton. Some of Goethe’s attacks are so embarrassing that many editions and translations of the Farbenlehre completely omit this portion. After it was published, the Farbenlehre did not gain much traction with scientists in the 19th century because Newton had made a far more compelling case for describing the physical nature of light. However, in recent decades, the Farbenlehre has experienced somewhat of a revival in the academic world. Recent works such as “Goethe’s Way of Science” and “Goethe Contra Newton”, authored by philosophers, physicists and other scholars, have pointed out that Goethe‘s approach to color and light was rooted in his background as a poet. He was not studying light in its physical form but the perception of light, and the Farbenlehre even contains extensive passages about the nature of scientific paradigms. His work is now experiencing a renaissance, if you will, as it is being re-evaluated by psychologists, cognitive scientists and philosophers of science.

Goethe and da Vinci are excellent examples of the creative synergy that arises when individuals are actively engaged in multiple disciplines. By approaching light and color from the perspective of a poet, Goethe stumbled on important scientific questions revolving around the perception of light which were quite distinct from the questions raised by Newton’s work which centered on the physical nature of light. And Goethe’s work as a writer also greatly benefited from his scientific endeavors. It is estimated that Goethe used a vocabulary of roughly 90,000 words in his work, four to five times more than the vocabulary of an average educated German living today and also substantially more than the vocabulary of Shakespeare (estimated at about 30,000 words). It is very likely that Goethe’s extensive readings and work in geology, paleontology, optics as well as his work as a cabinet minister and civil servant greatly enriched his vocabulary and allowed him to tap into words and metaphors that may not have been easily accessible to other poets.

 

Goethe is called the 'Prince of Poets' in Germany but may his way of interdisciplinarity be a relic of times long gone? Image: motograf (CC BY 2.0)

Goethe is called the ‘Prince of Poets’ in Germany but may his way of interdisciplinarity be a relic of times long gone? Image: motograf (CC BY 2.0)

Are the da Vincis and Goethes anachronisms of the past? Many of us still revere the brilliance of the individual who straddles and demonstrates excellence in multiple disciplines and we continue to recognize the value of new knowledge and creative ideas that are formed when supposedly distinct disciplines converge. But we also need to recognize that the nature of knowledge and disciplines is changing. The painter Leonardo da Vinci was one of the few individuals in Europe who was allowed to dissect human corpses and conduct anatomical studies. If he were to design “flying machines” today, it would be reasonable to expect that he first receive training in aeronautical engineering or at the very least perform a comprehensive review of existing designs and document whether his designs would abide by contemporary standards of efficiency and safety.

Our bar for what is an acceptable scholarly contribution today is very different from what it was five centuries ago. Peer review in its current form may have its flaws but it does prevent individuals from pontificating about scholarly topics based on idiosyncratic standards and whims. If Goethe had spent two decades studying the nature of light today and viewed his work as a scholarly endeavor, we would expect him to regularly present his findings at conferences, publish peer reviewed abstracts and papers, and solicit critical input from other scientists at every stage of his work to test whether it was truly up to par.

Because of the dizzying growth of knowledge and technologies available to the modern scholar, most contemporary scientific research is conducted by individuals who are members of teams, in which each team member has years or even decades of training to achieve the required level of mastery. This shift in the nature of how we generate knowledge in order to accommodate the growing complexity of knowledge also requires that we rethink our veneration of the age-old “polymath”, a person who as an individual achieves recognition and fame in a multitude of disciplines. A more apt term for today’s polymath may be a “multidisciplinarian”, an individual who is actively engaged in multiple scholarly, artistic or creative disciplines either as an individual or as a member of multidisciplinary teams.

Martin Chalfie received the 2008 Nobel Prize in Chemistry for discovering and developing green fluorescent protein and is a great example of a contemporary multidisciplinarian. He sees himself as a neurogeneticist, but routinely collaborates with physicists, engineers, biologists and physicians to study sensors.

“I should emphasize that I have not become an expert in each of these areas.  In fact, one of the terrific consequences of working in several different areas is that I get to learn from and work with other scientists “, he says in a recent essay for the Lindau blog.

Using a newer expression such as multidisciplinarian may also help remove some of the other connotations associated with the polymath. The historical association of polymaths with the Renaissance also links it to an age of patriarchy in which men but not women were considered to be scholars. The expression “Renaissance man” as a synonym for polymath reminds us of this gender bias. When the staff of the British magazines The Economist and Intelligent Life profiled 20 contemporary polymaths, they did not include a single woman on the list. The British law professor and novelist Alexander McCall Smith made the list, whereas the accomplished philosopher, novelist, essayist and professor of creative writing Rebecca Goldstein did not.

Merely switching from the expression “polymath” to “multidisciplinarian” is obviously not going to change existing prejudices or biases but it symbolizes that a contemporary view of multidisciplinarity ought to be more inclusive and take into account a team-based approach to scholarly endeavors than historical concepts which primarily centered on individuals.

The Cornerstones of Multidisciplinarity: Courage and Humility

How do we define multidisciplinarity today? The very nature of multidisciplinarity defies a precise definition, but a key feature of multidisciplinarity is the active engagement in scholarly, artistic or creative endeavors involving multiple disciplines. Active is the key word here. We would probably not consider a molecular biologist who enjoys watching TV documentaries about quantum physics and listens to classical music a multidisciplinarian. A more active engagement would take the form of conducting experiments, presenting papers or performing on stage. Such active engagement also comes with the risk of rejection and failure. This brings us to one of the key characteristics of a multidisciplinarian: courage.

By leaving the beaten path, the multidisciplinarian will invariably find herself in a situation where she is a novice. A physicist who embarks on studies of epigenetic regulation in cells, mathematicians who begin writing poetry or physicians who engineer novel devices not only have to learn a whole new set of skills, they also have to confront doubts that some of their specialist colleagues have regarding their qualifications. More established peers with narrow areas of expertise may reject the ideas of the multidisciplinarian because these are plain naïve, or because they be too far ahead of their time. Physicians who work as basic scientists are often plagued by self-doubt, not knowing whether they can achieve true excellence in medicine and science. The intellectual curiosity and restlessness which triggers the desire to venture beyond the boundaries of one’s primary discipline can only be sustained with a strong measure of courage and at times even over-confidence to overcome the inevitable episodes of disappointment, rejection and failure. On the other, it is equally important that this courage and over-confidence not turn into arrogance. The courage of a multidisciplinarian has to be paired with the humility of recognizing one’s own limitations and seeking appropriate guidance in order to overcome these limitations.  The lack of introspection and humility in Goethe’s polemics against Newton make it very difficult to see Goethe as a role model for multidisciplinarians.

The physicist Steven Chu is a multidisciplinarian who epitomizes both courage and humility. He received the Nobel Prize for Physics in 1997 for developing methods to cool and trap atoms with laser light, but the breadth of his research interests are astonishing. Chu has introduced methods to visualize and manipulate single biomolecules, measure the force on actin filaments inside a cell and the mechanisms of how ribosomes “proofread” to ensure the accuracy of translated proteins, all in collaboration with biologists and physiologist from all around the world. One of the most remarkable demonstrations of his courage to take on new challenges was his acceptance of the post to become the U.S. Secretary of Energy in 2009. During his tenure as the head of the Department of Energy, there was a doubling of renewable energy deployment in the U.S. and solar energy deployment even increased 10-fold.

Despite these extraordinary successes in so many disciplines, he retains a core sense of humility and says “I have been a scattered dilettante for my entire life”.

Encouraging Multidisciplinarity in a Scientific Laboratory

As appealing as the idea of multidisciplinarity may sound, implementing it in a contemporary scientific environment can be challenging. It takes years of meticulously designed experiments to address specific scientific questions. How can one afford to vacillate between scientific disciplines, arts and humanities and still end up with tangible, defined scientific results?

Eric Betzig is a physicist who received the 2014 Nobel Prize in Chemistry for his ground-breaking work on super-resolution microscopy which has allowed biologists to study the interactions of individual protein molecules inside a cell. Betzig clarifies that multidisciplinary scientific work does not mean giving up focus. Instead, periods of intense focus alternate with periods of searching for inspiration from other disciplines.

“In my personal experience, it has been valuable at certain times of my life to seek out information and ideas across disciplines, and at other times to focus monomaniacally in isolation on a single problem.  The former is necessary to make sure I choose the right problem and have the right tools at my disposal, and the latter is necessary to force both my conscious and sub-conscious mind to give 100% effort to finding an answer”, he says.

William Moerner, who shared the 2014 Nobel Prize in Chemistry with Eric Betzig, describes a deeply personal relationship with the arts, especially music. In his experience, the listening to music and performing music excites and stimulates the brain. Like Chalfie, he too, elaborated on his views on interdisciplinarity in a short essay for the Lindau blog.

Each multidisciplinary scientist has to develop her own path to grapple with the challenges of multidisciplinary work and many scientists may find a more focused scientific career more appealing than the life of a “scattered dilettante”. In my own cell biology laboratory, we try to foster multidisciplinary thinking without necessarily forcing it onto my lab members. At the end of a weekly laboratory meeting in which experimental data is presented, we devote a brief period of time to discussing a book (fiction or non-fiction) that a lab member has recently read or touching on philosophical questions that relate to the broader scientific enterprise such as the nature of causality or experimentation. These are not meant to be exhaustive discussions but just serve as gentle nudges that it may be fun to engage in various creative and intellectual enterprises outside of cell biology. More recently, I asked my graduate students to write science-related haikus.

Megan Rexius-Hall is a bioengineering Ph.D. student who designs microfluidic devices to study intercellular communication and is specifically asking the question of how stem cells undergoing differentiation into a mature cell type communicate with their undifferentiated neighbors:

 

Our nearest neighbors
By their fate or commitment
Differentiate

– Megan Rexius-Hall (Ph.D. student in Bioengineering at the University of Illinois at Chicago)

 

Sarah Krantz is a Pharmacology Ph.D. student investigating whether inflamed cells activate anti-inflammatory mechanisms to ensure that there is some defined endpoint to the inflammatory process.

 

Hot red fire burns strong
Searing foes but for too long
Calls rain and lives on

–    Sarah Krantz (Ph.D. student in Pharmacology at the University of Illinois at Chicago)

 

I am not sure that there is a direct tangible benefit of encouraging graduate students to write haikus or reading books outside of science. The students definitely learned to appreciate the power of language, imagery and metaphors. Distilling the essence of their research project down to a three verse haiku may also help them remember the “big picture” of their respective projects. But the most important feedback I received from the students was that they enjoyed thinking about the haikus and tinkering with the words to perfect their poem. Isn’t it the joy of discovery and playful tinkering that makes us want to be scientists?

 


Note: This essay is part of a series of articles on the Lindau Nobel Laureate Meetings Blog which constitute the Multidisciplinarity Forum. Please also read the post “Thoughts on Multidisciplinarity” by the Nobel Laureate William Moerner in which he describes how the importance of multidisciplinarity in his scientific work and the importance of music and theater in his life as well as the essay “Forced Multidisciplinarity” by the Nobel Laureate Martin Chalfie in which he writes about the excitement he feels when engaging in multidisciplinary work, often in collaboration with other scholars.

We encourage you to share comments about your own thoughts and experiences with multidisciplinarity below. And if you want, please feel free to post haikus about your own scientific work!

 

Daily Recap, Monday, 29 June 2015

Video of the day:

Yesterday’s video of the day is Stefan Hell’s lecture on “Optical Microscopy: the Resolution Revolution“.

 

 

This is not the only video from today! You are more than welcome to browse through our mediatheque for more.

 

Blog post of the day:

The blog post of the day is Martin Chalfie’s comment “On Multidisciplinarity

 

chalfie2_slider

 

Do take a look at even more exciting blog posts.

Picture of the day:

Here’s out picture of the day from yesterday’s International Get-Together hosted by this year’s partner country France:

 

65th Lindau Nobel Laureate Meeting, Lindau, Germany, Picture/Credit: Adrian Schröder/Lindau Nobel Laureate Meetings, 29 June 2015International Get Together at InselhalleNo Model Release. No Property Release. Free use only in connection with media cov

The great band “La Gapette” playing at the International Get-Together. Photo: Adrian Schröder/Lindau Nobel Laureate Meetings

 

For even more pictures from the Lindau Nobel Laureate Meetings, past and present, take a look at our Flickr-account.

 

Tweets of the day:

Just like yesterday, we do not want to deprive you from seeing what journalists, Young Scientists and even Nobel Laureates tell the world about the 65th Lindau Nobel Laureate Meeting. Here are our tweets of the day:

 

 

Last but not least, follow us on Twitter @lindaunobel and keep an eye out for #LiNo15

Martin Chalfie on Multidisciplinarity

Martin Chalfie’s profile in the mediatheque

 

Forced Multidisciplinarity

by Martin Chalfie

 

Should scientists be deep or broad in their training and their science? As with everything else, they should pick what they feel most comfortable with, and having a mix of approaches is probably best. I feel I benefited from having a broad education, but I am not sure that that is the best approach for everyone.

The best training I received in college did not come only from my sciences courses, but from the social science and humanities courses I took.  I greatly enjoyed these courses, but I was particularly influenced as a scientist by the exams.  Instead of answering questions that required me to repeat previously heard facts or theories, I was asked essentially to make up answers to entirely new questions that had never been mentioned previously (once I agonized over what the role of the buffoon was in the novels of Dostoevsky).  Although I sometimes felt that I was pulling answer out of thin air, in reality I had to define relevant terms, marshal evidence from the reading, and try to synthesize a cogent answer in a very short amount of time.  These exams made us grapple with information and ideas.  The practice provided by these exams definitely influenced my approach scientific questions and data. My experience in college also influenced my own teaching, since I give the same type of exams and strongly believe that learning how to think about data is much more important than the content. Thus, my general education has been very important for my development as a scientist, an educator, and a person.

I think of myself as a neurogeneticist.  Describing my work in this way makes it seem quite narrow, but the very nature of the work actually forces me to take a broad view of what I need to know and what experiments I should do.  Conducting a genetic screen is often a leap into the unknown and unexpected, since one never knows what genes will be revealed or what information you will need to understand them.  The identification of gene products begins a scramble to learn about them. As a result geneticists are forced to learn new areas of biology and sometimes chemistry and physics.  Moreover, no subject is off limits: although I left graduate school telling myself never to work on the kidney or fat, a few years ago I found myself do exactly that.  Thomas Benzing, a surgeon/biochemist contacted me about a kidney gene he was studying that was similar to one of our touch sensitivity genes.  Together we found that both of the encoded proteins bound cholesterol.

The touch-insensitive mutants I have worked on since my postdoc have two types of defects; animals are insensitive because either the touch sensing cells do not develop properly or they do not function correctly.  Thus, I am always studying both cell differentiation and mechanosensation.  Over the years the mutations and the cells they affect have led us to study new channel proteins, new transcription factors, neurodegeneration, microtubule function and structure, neuronal outgrowth, insulin signaling, cellular ensheathment, and touch sensitivity to give just a partial list.  In fact new areas seem to come up all the time.

 

Martin Chalfie, portrait by Peter Badge

Martin Chalfie, portrait by Peter Badge

I should emphasize that I have not become an expert in each of these areas.  In fact, one of the terrific consequences of working in several different areas is that I get to learn from and work with other scientists.  For example, now that we have identified the molecule that senses the mechanical signals in touch neurons, I am very interested in collaborating with physicists and engineers to investigate how the sensor works.  Having good collaborators means that I don’t need or even want to become an expert in every field that touches my work.  I just need to be open and interested.

Although our genetic screens introduced me to many new areas, working with C. elegans taught me even more.  In 1977 I attended the first International C. elegans Meeting at the Marine Biology Laboratory in Woods Hole.  The entire field was there, all 125 of us, and people worked on a wide variety of problems; after all we had an entire organism to study.  This meeting set the precedent for the C. elegans meetings for the next 10-15 years: we all attended and were interested in every session.  Because we wanted to understand this animal, talks on muscle function, cell death, chemosensation, cuticle formation, meiosis, cell migration, and many other topics were all equally interesting, and were often useful in our own work in surprising ways.  For example, work on a yolk protein turned out to be important for the identification of a tubulin gene in our cells, and membrane proteins needed for muscle were also found in our touch sensing cells.  Since many of these areas were new to us, we received a wonderful general education, and we taught each other.  In fact, those of us who attended that first meeting resisted as long as we could the idea of having multiple concurrent sessions at our meetings as the field continued to grow.  Now, however, people go to sessions on the nervous system or embryonic development or cell biology and miss out other fields.  Many of us, however, regret that we cannot learn about all the advances, especially those in areas far from our specific studies.

Despite the pushes from genetics, the animal, and the field, I am not as general as I would like to be.  In the last two years I have become interested more broadly in science because I have been on a committee planning a new general science course for all first year undergraduates at Columbia.  As I have worked with scientists and non-scientists from all over the university, I’ve developed (and sometimes rekindled) interests in physics, cosmology, physical anthropology, and earth science.  I am regaining the excitement that I had for these areas when I was young, and find that I have much to learn.  Learning about these areas may, but probably won’t, aid my research.  Nonetheless, they certainly (as do my family, my music, and my other interests) enrich my life.  I am never quite sure of what I will be working on next.

This essay is part of an ongoing discussion on multi-/interdisciplinarity at the Lindau Blog. Yesterday we published an essay on interdisciplinarity by Nobel laureate William Moener and our upcoming new longread by Jalees Rehman will be dedicated to the history of polymaths.

 

Now it’s up to you: What are your thoughts on the topic? Please share your views below in our comments section, or on Facebook or Twitter (#LiNo15).

Harald Martenstein unter Nobelpreisträgern: “Was ist dagegen schon die Oscar-Verleihung?”

In jedem Sommer treffen sich in Lindau Nobelpreisträger, sie halten Vorträge und diskutieren mit jungen Wissenschaftlern aus aller Welt. Es ist die hochkarätigste wissenschaftliche Tagung der Welt. Aber der spektakulärste Moment der Veranstaltung ereignet sich gleich zu Beginn, während der Eröffnungsveranstaltung – mein Gott, was erzähle ich da? Ich kann es eigentlich gar nicht beurteilen, ich bin zum ersten Mal da. Ich weiß gar nichts. Aber es muss ganz einfach so sein.

Eine Tür zum großen Saal der Inselhalle öffnet sich, dramatische Musik wallt auf, und die Nobelpreisträger marschieren ein, im Gänsemarsch. Es sind diesmal 65, eine sehr große Zahl. Seit 1901 sind insgesamt nur knapp 900 Nobelpreise vergeben worden. Die anderen im Saal, Politiker, Journalisten, Forscherkollegen, stehen auf und klatschen. Die Preisträger laufen durch ein Spalier klatschender Menschen. Sie kommen nur mühsam voran, denn ihre Füße sind schwer. Manche brauchen Stöcke, andere stützen sich auf eine Begleitperson. Sie sind fast alle alt, manche sehr alt, sie haben fast alle weißes Haar, diesen Preis bekommt man nicht als junger Mensch. Fast alle sind Männer.
“Was ist schon die Oscar-Verleihung dagegen, oder der Bambi?”

 

65th Lindau Nobel Laureate Meeting, Lindau, Germany   Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings

65th Lindau Nobel Laureate Meeting, Lindau, Germany
Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings

 

Diese alten Männer verkörpern das Wissen der Welt. Sie sind in ihren Fächern – Chemie, Physik, Medizin, Biologie – die brillantesten Köpfe des Jahrhunderts, das hier ist eine grandiose Filmszene. Was ist schon die Oscar-Verleihung dagegen, oder der Bambi? Irrelevant. Die alten Männer haben geholfen, Krankheiten zu besiegen, das Universum zu verstehen, die Rätsel unser Existenz zu entschlüsseln. Die haben mehr für die Menschheit getan als jeder engagierte Schriftsteller und jeder Hashtag-Aktivist, denke ich, während sie müde an mir vorbeischlurfen. Sie sind nicht jung, sie sind nicht schön, aber wenn die Erde untergeht und nur ein paar Menschen mit einem Raumschiff gerettet werden können, auf einen anderen Stern, dann wäre es sicher klug, ein paar von diesen alten, dicken, weißhaarigen Typen mitzunehmen. Das wäre klug, aber wäre es auch politisch durchsetzbar?

Während der Eröffnungsreden schlafen viele der Nobelpreisträger ein. Der Bundespräsident erzählt etwas über Mütter von Kindern mit Down-Syndrom, denen andere Mütter auf dem Spielplatz ihr Mitgefühl aussprechen. Sie hätten wohl den Termin für die Fruchtwasseruntersuchung verpasst, oder? Die Wissenschaft sucht nach Perfektion, sagt Gauck, aber es komme heute auch darauf, das Unperfekte zu verteidigen, das Fehlerhafte. Originalität wichtiger als Wissen?

 

 

Bundespräsident Joachim Gauck hatte sichtlich Freude an seinem Lindau-Besuch. Foto: Adrian Schröder / Lindau Nobel Laureate Meetings.

Bundespräsident Joachim Gauck hatte sichtlich Freude an seinem Lindau-Besuch. Foto: Adrian Schröder / Lindau Nobel Laureate Meetings.

Ein Wirtschaftswissenschaftler spricht als letzter, Kjell Nordström aus Stockholm. Er sagt, dass in ein paar Jahren 85 Prozent der Menschheit in etwa 600 Städten leben werden, diese 600 Städte sind dann die Welt, die Menschen werden von einer Stadt in die andere ziehen, Länder sind unwichtig. So ähnlich habe man, als Bürger, auch im Mittelalter gelebt. Auch Wissen werde für das Individuum unwichtig, weil das Internet mehr Wissen speichern kann als das beste Gehirn. Originalität werde viel wichtiger sein als Wissen. Nordström spricht gut, er ist originell, alle klatschen. Erst hinterher wird mir klar, dass ich nicht seiner Meinung bin. Originalität ohne Wissen, was soll das sein? Etwas, wofür man den Bambi bekommt, und was ist dann mit dem Nobelpreis?

Einer der Nobelpreisträger fehlt, der sonst fast immer in Lindau gewesen ist. Der Brite Tim Hunt, Biochemiker, hat irgendwo eine Dinner-Rede gehalten und nebenbei die ausdrücklich als Scherz deklarierte Bemerkung fallen gelassen, dass Frauen, wenn man sie kritisiert, schnell anfangen würden, zu weinen. Er wurde von seiner Hochschule zur Kündigung gezwungen. Sie haben ihn nicht mal angehört.

 

Kjell Nordström während seines Vortrages. Photo: Christian Flemming/Lindau Nobel Laureate Meetings

Kjell Nordström giving his presentation. Photo: Christian Flemming/Lindau Nobel Laureate Meetings

Sein Nobelpreis hat ihm nichts genützt. Die Fürsprache seiner Frau, einer renommierten Wissenschaftlerin, hat ihm nichts genützt. Dass er sich entschuldigt hat, nützte nichts. Ein Kollege brachte eine wissenschaftliche Studie bei, aus der hervorgeht, dass Frauen häufiger und rascher weinen als Männer, weltweit. Es ist bewiesen. Das nützte auch nichts. Dann ist die Eröffnungsveranstaltung zu Ende, und das Wissen der Welt wacht auf, erhebt sich mühsam, 65 Nobelpreisträger streben dem Ausgang zu. Wichtig ist heute vor allem Originalität. Wenn das Raumschiff abfliegt, tippe ich auf Heidi Klum als Passagier.

G’day from down under

Hello Lindau, Australia says G’day!

 

There are 13 Young Scientists who form the Australian contingent at this year’s Lindau Nobel Laureate Meeting. We are a happy bunch of people from very different backgrounds, united by a common love of science and life, and eternally grateful to the Lindau Nobel Laureate Council, Science Industry Endowment Fund (SIEF, Australia) and the Australian Academy of Science for selecting us and sponsoring this opportunity of a lifetime.

At last year’s 64th Lindau Nobel Laureate Meeting, Australia hosted an International Day. This year, our mission objectives are simple, and I suspect, similar to your own. We are here to learn, exchange ideas, hopefully contribute to the global scientific community and use our experiences at Lindau to help make our home a better place. But we also want to get to know all of you, and show you what Australians have to offer.

First, there’s Emma Beckett, the fun-loving, chatty and incredibly knowledgeable nutritionist and science star, instantly recognisable by her ever changing coloured hair streaks (it’s pink this week at Lindau); Amelia Parker, the biomedical engineer currently working in cancer research at UNSW Australia, a Sydney girl who grew up in the Shire. Tristan Clemons, who works on the therapeutic applications of nanoparticles in various human health conditions, and who is also a champion hockey player aiming for the 2016 Olympics in Rio; Mark Zammit, our resident physicist; Paul Berkman, a gentle and knowledgeable giant (one of two CSIRO scientists here this year); Bronson Philippa from far North Queensland, and Elena Tucker from the Murdoch Children’s Research Institute (Melbourne), to name a few.

 

EmmaBeckettMartinChalfie

Emma Beckett with Martin Chalfie (and a little koala) at the Summer Festival of Science.

 

Australia is a land of opportunity, a beautiful multicultural melting pot, filled with people from all cultures and different walks of life. Just ask any of us, especially Eva Alvarez de Eulate, Kang Liang, Thomas Oon Han Loke, Vipul Gupta and Tim Zhao. Even despite the perennial issues of science funding, common throughout the world, professional scientific bodies such as the Australian Academy of Science as well as the Science and Industry Endowment Fund have strived to look after the next generation of Australian Researchers.

Being an island continent, geographically isolated from the rest of the world after separating from Gondwana ~100 million years ago, Australia has always fostered enormous diversification as well as uniqueness in its inhabitants (hence our strict quarantine laws – sorry folks!). Australian scientists are highly adaptable. Australians are intrinsically trained to think outside the box. Bred in a tough environment, we are resourceful and aim at finding innovative solutions to difficult problems. Australians are also adventurous, and at least three of us are attending as delegates of other countries (Nicholas Chilton – UK, Nathanael Lampe – France, Thomas Higgins – Ireland).

 

AmeliaParker

Amelia Parker exploring Lindau.

 

Australians are generally open-minded and appreciate everything. We admire the efficiency of the German railway system (if only someone could help translate the German railway and public transport system back to our Australian situation!), the solar panels in the countryside, German industry, and the natural beauty of Lindau and Bavaria.

Australians are brave and resourceful. Most of us are staying in Hotel Schöngarten Garni, which is on the mainland, approximately 35 minutes walk from the meeting venue Inselhalle. On Saturday 27 June, Amelia Parker, who will be presenting in Prof Harold Varmus’ Master Class in cancer research, provided a perfect example of this. On her very lonesome, with nothing but dead-reckoning and a few general directions from our lovely host, she set out from our hotel on foot and managed to navigate the criss-crossing path across the train-tracks, past a swarm of bees, over hill and under dale, until she reached the Inselhalle. And then she proceeded to teach the path to the rest of us.

Above all, Australians are loyal. From an early Age, we are taught the importance of “mateship” and social responsibility. Time and time again, history – both in times of peace and also, unfortunately, in times of war – has shown an Australian to be someone who you want to be standing next to you. We make great research lab partners, travel companions, and above all, great mates.

So please come and say hi to us! We’ll be the ones giving out the little koalas. We are a lively and happy bunch, friendly and approachable. We would love to hear your stories, and above all, make new friends.

 

Australiandelegates

Some of the members of the Australian contingent outside the Shine Dome at the Australian Academy of Science, Canberra.

 


Slider image: Adrian Midgley (CC BY-NC-ND 2.0)

Lindau 2015: Neue Antworten auf alte Fragen

Es geht los! 65 Nobelpreisträger, 650 Young Scientists, 6 Tage Programm, vollgestopft mit Vorträgen, Seminaren, Diskussionen. Lindau wird summen wie ein Bienenstock. Wissenschaftler, wo man steht und geht, da hoffe ich natürlich einen Nobelpreisträger persönlich kennenzulernen: Im Hotel beim Frühstück, im Bus zum Vortragssaal oder beim Grillen am See.

 

14465519780_e96008ce25_z

Ich freue mich besonders auf den Krebsforscher Michael Bishop und den Schriftsteller Wole Soyinka, zwei Menschen, die mein Denken prägten: Der Amerikaner Bishop durch seine eleganten genetischen Experimente, und der Nigerianer Soyinka durch seine mahnenden politischen Bücher. Obwohl beide auf unterschiedlichen Gebieten ausgezeichnet wurden, gingen sie der gleichen Frage nach: Wie kann die Fehlbarkeit des Einzelnen eine so verheerende Auswirkung auf alle haben?

So wie eine Tumorzelle mit ihrem fehlgesteuerten genetischen Programm einen ganzen Körper mit seinen Millionen Zellen zugrunde richten kann, so kann ein Diktator mit seinem missratenem politischen Programm einen ganzen Staat mit seinen Millionen Menschen zugrunde richten.

Ich bin sehr gespannt auf den Vortrag von Susumu Tonegawa über „Memory Engram Cells” – diese sind dafür zuständig, Gedächtnisinhalte abzurufen. Tonegawa hat diese Zellen in Mäusen identifiziert, mittels Neuropharmaka inhibiert, Optogenetik aktiviert und beobachtet, welche Auswirkungen diese Eingriffe auf das Gedächtnis haben. Da ich mich während meiner neurogenetischen Promotion auch mit Alzheimer beschäftigt habe und dabei besonders mit der Frage, warum bei dieser Krankheit nur bestimmte Nervenzellen des Gehirns krank werden, interessiert mich dieses Thema.

Ein Science Breakfast beschäftigt sich mit dem Thema Science and Ethics. Konkrete Inhalte sind noch nicht bekannt, aber ich hätte einige Vorschläge: Mögliche genetische Diskriminierung in der Personalised Medicine durch Krankenversicherungen und Arbeitgeber, die therapeutische Anwendung der CRISPR-Technologie in humanen embryonalen Stammzellen, Genomischer Datenschutz von HeLa-Zellen und öffentlich geförderte Forschung an HeLa-Zellen.

„Ex Africa semper aliquid novum“

„Aus Afrika kommt immer etwas Neues“ wusste schon der römische Geschichtsschreiber Herodot und deshalb bin ich gespannt auf die Geschichten derjenigen afrikanischen Young Scientists, die in ihren Heimatländern forschen. Da ich selber 3 Jahre in Afrika in einem staatlichen Virologie-Labor gearbeitet habe, kenne ich die Probleme der medizinischen Forschung vor Ort: mangelhafte instrumentelle Ausstattung und fehlender Zugang zur Fachliteratur. Ich kenne jedoch auch den Einfallsreichtum und die Resilienz meiner afrikanischen Kollegen, die sich mehr fachlichen Austausch mit Wissenschaftlern aus anderen Ländern wünschen. In Lindau werden sie dazu reichlich Gelegenheit haben: in den Discussions with Young Scientists und den Master Classes mit den Nobelpreisträgern. In der Master Class halten jeweils vier bis fünf junge Wissenschaftler einen Kurzvortrag und ein oder zwei Nobelpreisträger moderieren die anschließende Diskussion. Vielleicht kommt ja einer der heute teilnehmenden Young Scientists in 30 Jahren als Nobelpreisträger nach Lindau zurück: Bei der Verleihung des Nobelpreises sind die Preisträger in Chemie und Physik durchschnittlich 57, in der Medizin 55 Jahre alt.

 

14995101271_fec4f29c2e_z

Ich freue mich, dass „Wissenschaft in Afrika“ ein Schwerpunkt der diesjährigen Tagung ist und bin gleichzeitig enttäuscht, dass der einzige afrikanischstämmige Chemie-Nobelpreisträger, Ahmed Zewail, nicht in Lindau dabei ist. 1999 erhielt der gebürtige Ägypter für seine Leistungen auf dem Gebiet der Femtochemie den Nobelpreis. Er hatte mithilfe von Lasern ein bahnbrechendes Verfahren zur Beobachtung der Bewegungen einzelner Atome auf der Zeitskala von Femtosekunden entwickelt. Eine Femtosekunde entspricht dem millionsten Teil einer Milliardstelsekunde. Die sogenannte Femtosekunden-Spektroskopie erreicht damit den Zeitraum, in dem chemische Reaktionen tatsächlich stattfinden und ermöglicht, wichtige Reaktionen zu verstehen und vorauszusagen. In seiner 2004 erschienenen Biographie “Voyage Through Time: Walks of Life to the Nobel Prize” (Deutsch: Reise durch die Zeit – Weg zum Nobelpreis) erzählt er seine Lebensgeschichte und beschreibt seine Arbeit bis zur Verleihung des Nobelpreises. Es wäre schön gewesen, diese Geschichte von ihm selbst zu hören.

Umso mehr freue ich mich, dass der Physik-Nobelpreisträger Claude Cohen-Tannoudji in Lindau teilnehmen wird. In seinem Nobelpreis-Vortrag 1997 erzählte er gleich zu Anfang, dass seine Familie aus Tanger, Marokko stammt und seit dem 16. Jahrhundert in Algerien lebt. Cohen-Tannoudji erhielt den Preis für das Kühlen und Einfangen von Atomen mit Laserlicht. Er entwickelte die Sisyphus-Kühlung mit der er eine Temperatur von nur 6 Millikelvin erzeugte, die deutlich unter dem Doppler-Grenzwert liegt. Cohen-Tannoudji wird in Lindau über “The Adventure of Cold Atoms. From Optical Pumping to Quantum Gases„ sprechen.

 

14852215115_1a103008b9_z

 

Was die 88 in Lindau teilnehmenden Nationen betrifft erwarte ich bei den Nachwuchswissenschaftlern eine große Vielfalt aber nicht bei den Nobelpreisträgern. Es wird ein G3-Gipfel sein: Rund 70 % der Nobelpreisträger in Physik, Chemie oder Medizin kommen aus einer der drei folgenden Nationen: USA, Deutschland, UK (England, Schottland, Wales, Nordirland).

Von 1901 bis 2014 gab es 199 Physik-Nobelpreisträger davon 87 aus den USA (Platz 1) 25 aus Deutschland (Platz 2) 21 aus UK (Platz 3). 67 % der Physik-Preisträger kommen aus einer dieser drei Nationen.

Wenig anders sieht es bei den 169 Chemie-Nobelpreisträgern aus: 64 aus den USA (Platz 1), 29 aus Deutschland (Platz 2), 27 aus UK (Platz 3). 71 % der Chemie-Preisträger kommen aus einer dieser drei Nationen.

Das gleiche Bild bei der Medizin: 207 Medizin-Nobelpreisträger, davon 96 aus den USA (Platz 1); 31 aus UK (Platz 2), 17 aus Deutschland (Platz 3). 70 % der Medizin-Preisträger kommen aus einer dieser drei Nationen.

Ich wundere mich deshalb nicht, dass es die jungen Wissenschaftler aus den Entwicklungs- und Schwellenländern in eine dieser drei Nationen zieht. Sie gehen dorthin wo es die besten Forschungsbedingungen und Mentoren gibt. Ahmed Zewail, mittlerweile amerikanischer Staatsbürger und Professor am CalTech ging diesen Weg. Und wer weiß, vielleicht knüpft einer der Young Scientists ja schon Kontakte in der Master Class in Lindau? Aber warum mal nicht den umgekehrten Weg gehen? Ich wünsche mir, dass ein Nobelpreisträger mal sein Sabbatical in einer afrikanischen Forschungseinrichtung verbringt, damit er sich vor Ort selbst ein Bild der Lage macht und das ungenutzte wissenschaftliche Potenzial sieht.

Unter den 65 Nobelpreisträgern in Lindau befinden sich drei Frauen (4.6 %). Die bisherigen 575 Nobelpreise in Physik, Chemie und Medizin gingen an 559 Männer und 16 Frauen (2.8 %). In Physik bekamen zwei Frauen den Nobelpreis, in Chemie vier und in Medizin zehn Frauen. Die Professorenschaft ist also bisher ein Männerverein – aber das soll nicht so bleiben. Was wir tun müssen um das zu ändern, darüber sollte in Lindau gesprochen werden. Ich hoffe, dass Friedensnobelpreisträger Kailash Satyarthi das Thema in seinem Vortrag „Education Needs to be Equitable and Inclusive for All“ zur Sprache bringt. Vor allem vor dem Hintergrund des jüngsten Sexismusskandal um Nobelpreisträger Tim Hunt, der bei seinem Vortrag über Frauen in der Wissenschaft in Südkorea, mit einem sexistischen Witz über Frauen, viele Wissenschaftlerinnen verärgerte.

 

14802088327_ed583a4e65_z

 

Die Lindauer Nobelpreisträgertagung ermöglicht es nicht nur begeisternde Vorträge aus der Wissenschaft zu hören, sondern auch konstruktiv-kritisch zu hinterfragen wie wir Wissenschaft betreiben, kommunizieren (Publikationsbias, Open Access, Impact Factor) und bezahlen (Industrie und Drittmittel). Wir sollten die mediale Aufmerksamkeit nutzen um neuen Ideen Gehör zu verschaffen.

Daily Recap, Sunday, 28 June 2015

Over the course of the next five days, you’ll receive a daily recap. The idea behind it is to bring to you the day’s highlights in a blink of an eye. The daily recaps will feature blog posts, photos and videos from the mediatheque.

Yesterday, the 65th Lindau Nobel Laureate Meeting started in grand fashion with the festive opening ceremony featuring the entrance of the laureates, German Federal president Joachim Gauck and the welcome address by Countess Bettina Bernadotte.

 

Video of the day:

 

 

This is not the only video from today! You are more than welcome to browse through our mediatheque for more.

 

Blog post of the day:

Of course, our blog post of the day is the one by William Moerner, who offers us a valuable insight into his “Thoughts on Multidisciplinarity“. It is a real first for our blog to have a Nobel Laureate write an article. A fact we feel very honoured about. Also, Moerner’s article is part of an ongoing public debate on interdisciplinary – it will continue tomorrow with an essay by Nobel laureate Martin Chalfie and on Tuesday with the new edition of our longread series by Jalees Rehman – so stay tuned!

 

moerner_william_chemistry

 

Do take a look at even more exciting blog Posts.

 

Picture of the day:

Being the first day of the meeting, our picture of the day is the one of the first official line-up.

 

65th Lindau Nobel Laureate Meeting, 28.06.2014, Lindau, Germany, Picture/Credit: Rolf Schultes/Lindau Nobel Laureate Meetings No Model Release. No Property Release. Free use only in connection with media coverage of the 65th Lindau Nobel Laureate Meeting. For all other purposes subject to approval.

The Opening Ceremony of the 65th Lindau Nobel Laureate Meeting, Federal President Joachim Gauck, Countess Bettina Bernadotte and around 50 Nobel laureates. 28.06.2014, Lindau, Germany, Picture/Credit: Rolf Schultes/Lindau Nobel Laureate Meetings

 

For even more pictures from the Lindau Nobel Laureate Meetings, past and present, take a look at our Flickr-account.

 

Tweets of the day:

We want to thank all of you who engage with us on Twitter already. Thank you for the excellent job! Here are our tweets of the day:

 

Last but not least, follow us on Twitter @lindaunobel and keep an eye out for #LiNo15

Laufen – eine Liebeserklärung

Als Student oder Wissenschaftler benutzt man im Alltag vor allem Eines: den Kopf. Ob im Labor oder in der Bibliothek, stunden-, tage-, ja wochenlang werden die grauen Zellen malträtiert und der Rest des Körpers bleibt unbewegt. Vielleicht deshalb sehen einige Wissenschaftler und Intellektuelle körperliche Aktivität als zweitrangig (oder -klassig) an.[i] Das habe ich selbst früher auch getan, wurde aber eines Besseren belehrt. Jetzt bin ich der festen Überzeugung: Laufen ist der ideale Sport, gerade für Wissenschaftler! Das versuche ich an drei Punkten zu illustrieren: Laufen hilft beim Denken, stärkt wichtige Charakterzüge und bringt Menschen zusammen.

 

Laufen entspannt den Kopf und verhilft zu neuen Ideen

Alan Turing war ein genialer Mathematiker, Wegbereiter der Informatik, herausragender Kryptoanalytiker im 2. Weltkrieg und ein passionierter Läufer[ii]. Auf die Frage, warum er laufe, antwortete er einmal: “I have such a stressful job that the only way I can get it out of my mind is by running hard”[iii]. Jeder, der sich nach einem langen Tag im Labor zu einer kurzen Runde durchringt, kann das wohl unterschreiben. Beim Laufen ruht der Kopf aus und die Bewegung gibt wieder Kraft. Dabei sind die Gedanken keineswegs ausgeschaltet – dem Magazin The Chronicle of Higher Education erzählten Forscher, dass sie sogar „Heureka“ Momente beim Laufen erleben[iv].

Außerdem ist Laufen immer und überall möglich und damit ideal für den oft unplanbaren Forscheralltag. Wenn die Zellkulturen also mal etwas länger brauchen und das Kino schon zu hat – ein Lauf ist immer noch drin.

 

Laufen lehrt Ausdauer

Langstreckenlauf und Wissenschaft haben etwas gemeinsam. Das meint Wolfgang Ketterle, der 2001 als jüngster Physiker den Nobelpreis erhielt und 2014 den Boston Marathon (2:44h) lief. In einem Interview[v] erklärte er, dass Laufen und Wissenschaft ähnliche Charaktereigenschaften voraussetzen: Ausdauer, Geduld und Ehrgeiz. In der Wissenschaft dauere es oft Jahre, bestimmte Dinge zu untersuchen und es gehe nicht immer schnell voran. So sei es auch mit regelmäßigem Training. Für mich persönlich ist dabei Ausdauer der wichtigste Punkt. Beim berühmten Kilometer 35 des Marathons fühlt sich jeder schlecht und man wünscht sich nichts sehnlicher, als stehen zu bleiben. Hat man es dann aber geschafft, ist die Freude riesig und man versteht, dass die schweren Zeiten dazu gehören. So lehrt der Marathon eine wichtige Lektion für den wissenschaftlichen Alltag[vi].

 

Beim Laufen lernt man Menschen kennen

Schließlich: Laufen ist sozial. Das mag überraschend klingen, denkt man doch es sei ein Einzelsport. Weit gefehlt! Am besten ist es bei Wald-und-Wiesen-Läufen zu beobachten: Das nonverbale Verständnis unter Läufern. Man benötigt keinen Small Talk zum Gesprächsbeginn, denn das Laufen liefert ein gemeinsames Ziel. So kommen auch Menschen zusammen, die sich sonst nie getroffen hätten. Man lernt sich dann oft auf ganz andere Weise kennen und der wissenschaftliche Austausch kann beginnen. Insbesondere bei so intensiven Tagungen wie dem Nobel Laurate Meeting ist ein gemeinsamer Lauf ein Segen.

 

Last but not least

Soweit meine persönliche Liebeserklärung an die wohl schönste Sportart der Welt[vii]. Die wichtigste Sache fehlt aber noch: Laufen macht einfach Spaß! Und so freue ich mich schon, in Lindau meine Laufschuhe auszupacken und spannende Leute, neben all den großartigen Vorträgen und Diskussionen, auch bei Runden am Bodensee näher kennen zu lernen.

 


Slider photo: Elvert Barnes (CC BY-SA 2.0)

[i] Beispiel: “ I hate all sports as rabidly as a person who likes sports hates common sense”. H. L. Mencken, Heathen Days.

[ii] Seine Marathonbestzeit lag mit 2:46h nur 10 min über der olympischen Bestzeit 1948: http://www-history.mcs.st-and.ac.uk/Extras/Turing_running.html

[iii] http://www.turing.org.uk/scrapbook/run.html

[iv] http://chronicle.com/article/Eureka-Running-Jogs-the/124164/

[v] http://www.runnersworld.com/celebrity-runners/im-a-runner-wolfgang-ketterle-phd

[vi] …,fürs Leben und für die Ehe (Anmerkung meiner Frau).

[vii] Cave: Bisher konnte diese Tatsache leider noch nicht durch randomisierte Doppelblindstudien belegt werden.

Interdisciplinarity – More than a Buzzword

This year’s Interdisciplinary Lindau Nobel Laureate Meeting will bring together a selection of outstanding minds from multiple generations, 3 scientific disciplines, and nearly 90 different countries. Nobel Laureates and young scientists from all around the world in the fields of chemistry, physics, and physiology & medicine will listen to lectures on some of science’s greatest discoveries and participate in discussions about some of the world’s toughest challenges.

When the meetings first began after the end of World War II, a frequent topic of discussion was undoubtedly, nuclear energy. Indeed, at one of the first Lindau meetings in 1955, 52 Nobel Laureates signed the Mainau Declaration as an appeal to governments around the world against the use and proliferation of atomic weapons. At this year’s meeting, among the conversations ranging from new chemical reaction mechanisms, to cosmic microwave background radiation, to cell signaling and drug development, there will be a slightly different, but equally threatening, unifying theme: climate change.

 

A defining challenge for this generation

When you hear the words climate change, you might picture a sad polar bear cub on a melting glacier, a landscape covered in coal-fired power plants pouring greenhouse gases into the atmosphere, extreme weather events destroying homes, or if you’re in the U.S., Kevin Costner, WALL-E, or Al Gore may even come to mind. When you think about the problems that chemists, physicists, or biologists are working to solve though, climate change is probably not the first thing that comes to mind.

With physicists, we think of stars and the expanding universe, or a chalkboard full of mathematical equations. With biologists, it’s a lab bench cluttered with petri dishes and microscopes to cure cancer or prevent the next super bug. With chemists, a recent report released by the Royal Society of Chemistry that sought to better understand public perceptions of chemists in the UK, showed that when asked where they thought a chemist might work, 76% of respondents said a pharmacy.

 

Ladd_At Mass Spec

We just can’t shake that white lab coat image can we? Anyway…I digress. Photo: Mallory Ladd

Climate change is one of the most complex challenges of this generation.

We often assume that it’s just another “environmental” problem, not dissimilar from air and water pollution or pesticide abuse; implying that we could construct some collaborative effort to “clean up” our resource utilization habits, constrain our release of toxic materials, substitute “green” products for other brands, and so on, and everything will be okay.

Climate change is not just an environmental issue though. First and foremost, it is an energy issue.

According to the U.S. Energy Information Administration, nearly 90% of the world’s energy is supplied via the combustion of fossil fuels. This combustion process is what releases carbon dioxide (CO2) and methane (CH4), among other greenhouse gases, into the atmosphere, resulting in the warming of our entire planet. The climate change issue cannot be separated from the energy issue. Thus, it cannot and will not be solved within a single discipline, or even within a single nation.

It used to be that scientists ran one experiment at a time, replicated it, maybe published it, and then moved on to their next experiment. In the past few decades though, there has been a surge of high-precision tools and advanced data integration techniques that have revolutionized our ability to collect and interpret large amounts of data from complex systems in a short amount of time. Many of these tools have allowed us to look at specific issues relating to climate change.

For example, physicists have used supercomputers to visualize plasma dynamics to explore fusion energy applications which could significantly lower our carbon footprint, biologists have genetically mapped entire soil microbial communities to monitor how their metabolism changes and impacts carbon cycling under various environmental conditions, and chemists are creating and using high-resolution analytical technologies to understand and predict how complex molecular interactions may impact or even control global scale climate processes.

Young scientists, like those who will be attending this year’s Lindau Nobel Laureate Meeting, are crossing academic boundaries, while simultaneously focusing on the fundamentals in their respective fields, more than ever before. Instead of “sacrificing depth for breadth” as some of the gray-beards will still undoubtedly try to argue, there is a new breed of scientist that is effectively communicating between fields and between cultures to find new applications of pure science with deep and measurable impacts. The disciplinary scientists of the past have come out of their silos and interdisciplinary, collaborative research projects are getting funded more and more frequently. Teams of researchers are successfully sharing and exchanging large data sets, and working together to answer complex scientific and societal issues like climate change.

 

Photo: Mallory Ladd

Photo: Mallory Ladd

Interdisciplinarity at work in the Arctic

In fact, the U.S. Department of Energy has recently funded a multi-institutional, cross-disciplinary, multi-million dollar project to do just that. The Next Generation Ecosystem Experiments (NGEE-Arctic) project has brought together scientists, engineers, and computational modelers, to combine laboratory and field observations with ecosystem models, to predict and quantify the response of physical, ecological, and biogeochemical processes to atmospheric and climatic change from molecular to landscape scales. This massive undertaking aims to ultimately enhance the robustness of global climate projections which would allow policymakers to make more informed decisions based on reliable scientific data.

When I first decided on a career in chemistry, no one could have told me that one day, my work would bring me to northern Alaska, where I would find myself walking along the coast of the Beaufort Sea, listening to an Iñupiat whaler describe how his family’s ancestral lands and sacred burial grounds are now submerged beneath the rising waters of the Arctic Ocean because of human activities. Certainly no one could have told me that my research, sitting at the interface of chemistry, climate science, and public policy, may impact how we predict what will happen to those lands in the future.

Characterized not only by its pristine beauty and harsh winter weather, the Arctic is known for its vast stores of carbon and for already showing dramatic impacts of climate change as it continues to warm at a rate twice as fast as the rest of the planet. In fact, it has recently been estimated that Arctic soil organic matter—dead plants and animals that have been slowly decaying for millennia—contain more than twice as much carbon as what currently exists in the atmosphere.

 

 

Caption: Map of the 1950-2014 temperature trend showing disproportionate warming in the Arctic. Image Credit: NASA/GSFC/Earth Observatory, NASA/GISS.

Map of the 1950-2014 temperature trend showing disproportionate warming in the Arctic. Image Credit: NASA/GSFC/Earth Observatory, NASA/GISS.

Map of the distribution of soil organic carbon showing a concentration at northern latitudes. Image Credit:  FAO-UNESCO, Soil Map of the World, digitized by ESRI. Soil climate map, USDA-NRCS, Soil Science Division, World Soil Resources, Washington D.C. Soil Pedon database, USDA-NRCS National Soil Survey Center, Lincoln, NE.

Map of the distribution of soil organic carbon showing a concentration at northern latitudes. Image Credit: FAO-UNESCO, Soil Map of the World, digitized by ESRI. Soil climate map, USDA-NRCS, Soil Science Division, World Soil Resources, Washington D.C. Soil Pedon database, USDA-NRCS National Soil Survey Center, Lincoln, NE.

Rising temperatures are expected to thaw some of this organic matter and also increase decomposition rates. As the organic material is broken down by microbial decomposers, the amount of CO2 and CH4 being released from the soil may increase, which could convert the Arctic from a “sink” for atmospheric carbon into a net “source”. More carbon being released from the soil in the form of these potent greenhouse gases could lead to more warming, ultimately creating an irreversible positive feedback loop. This is one reason why many refer to the Arctic as a tipping point, and why some of the potentially serious consequences that may result have drawn the attention of scientists, and politicians, from around the world.

 

soil

Rising temperatures in the Arctic have led to rapid thawing of permafrost soils, leaving large scars on the landscape like this thermokarst feature near the Arctic Circle. Previously frozen organic matter is now exposed to warmer conditions and sunlight, where it begins to breakdown and release carbon in the form of CO2 and CH4.

Also stored alongside all that frozen soil organic carbon however is a limiting nutrient that both plants and microbial decomposers compete for—nitrogen. If plants are capable of taking up organic nitrogen, and can outcompete the microbes for this pool, this could enhance their productivity—carbon intake via photosynthesis—which would help maintain these soils as a sink for atmospheric carbon. Understanding how nitrogen availability will respond to warmer temperatures in these systems is critical to our ability to project future global climate scenarios.

As part of this project at the U.S. Oak Ridge National Laboratory, my doctoral research investigates how organic nitrogen availability changes over time and space in the Alaskan Arctic. More specifically, I’m developing high-performance analytical chemistry techniques to be able to monitor shifts in the amount and chemical composition of this highly dynamic pool across various landscape gradients, at different soil depths, and under warming conditions. This work will generate high-resolution, molecular-scale data that will be used to inform microbial decomposition models, as well as generate insights into the conditions necessary for various Arctic plants to effectively compete with the microbial community for this organic nitrogen pool.

 

 

erosion

Erosion of permafrost due to warming near the coastline of the Chukchi Sea in Alaska has already resulted in massive infrastructure failures forcing residents to relocate their homes. Image credit: United Nations Environment Program Report: Policy Implications of Warming Permafrost

In addition to my lab and field work, I recently spent time working with the Woodrow Wilson International Center for Scholars, a nonpartisan policy forum that addresses global issues through independent research and open dialogue. While there, I was able to gain valuable experience in applying my scientific background to actionable policy ideas for Congress, the Administration, and the broader policy community. Chemists, physicists, and biologists alike offer a new perspective to public policy discussions, and innovative graduate programs are now making it possible for graduate students in the sciences to train in both, earlier in their careers.

 

 

 

barrow

The Barrow Arctic Research Center on the Barrow Environmental Observatory where the NGEE-Arctic team has spent the last 4 years collecting data on landscape characteristics, hydrology, vegetation, and biogeochemistry for the various high-resolution models.

In the past few years, new interdisciplinary graduate degree programs have brought together scientists and engineers from many different disciplinary backgrounds into one program to conduct their scientific research, and also pursue their interdisciplinary interests. At the University of Tennessee, the Bredesen Center for Interdisciplinary Research and Graduate Education has designed a doctoral curriculum that allows students to complete their work in lab and pursue either public policy or entrepreneurship as it relates to their scientific research. Some students work with legislators to apply their research to the policy discussion while others are developing technologies and working with local businesses to scale their product and push it to market. The University of North Carolina School of Medicine now has a program that allows life-science PhD candidates to complete a 2-year science educator certificate program at the same time to prepare them for a teaching-intensive career. Many universities, in the U.S. and around the world, now offer dual degree programs that allow science graduate students to also pursue a Master of Business Administration (MBA) at the same time.

At this year’s Lindau Meeting, Nobel prize-winning interdisciplinary scientists—including Drs. Stefan HellEric Betzig, Steven Chu, Martin Chalfie, William Moerner, and Ada Yonath, just to name a few—will give lectures and meet with the young scientists of tomorrow to discuss how we should approach interdisciplinary work in the future, what the challenges are in doing so, and why it is so important that interdisciplinary research continues, so that we may address the increasingly complex, global societal and scientific problems that lay before us.