Life in Super-Resolution: Light Microscopy Beyond the Diffraction Limit

In 1979, South African Allan M. Cormack won the Nobel Prize in Physiology or Medicine for his development of X-ray computed assisted tomography (CT), which allows physicians to see internal bodily structures without cutting. A quarter of a century later, Sir Peter Mansfield of the United Kingdom was given the same award in 2003 for advances in magnetic resonance imaging (MRI) that led to scans taking seconds rather than hours.

Today, these two imaging techniques serve as essential diagnostic and investigative tools for both medicine and the life sciences. But one unique fact about Cormack and Mansfield stands out: Despite winning the most prestigious award in medicine, neither Laureate went to medical school nor had a background in biology — rather, they were both true-blue physicists.

Cormack spent most of his research career focusing on nuclear and particle physics, while his CT efforts remained an intermittent side project for almost two decades. For Mansfield, his postdoctoral work on nuclear magnetic resonance spectroscopy in doped metals gradually transitioned into scanning his first live human subject with the newly invented MRI technique.

The tradition of physicists driving advances in biomedical imaging continues, as made evident by the lectures of Steven Chu and Stefan Hell at the 66th Lindau Nobel Laureate Meeting. Both showed visually stunning examples of their research using super-resolution microscopy, a method that transcends the diffraction limit of conventional light microscopes to probe on a nanoscopic scale.


Stefan Hell in discussion with young scientists at #LiNo16. Photo: Ch. Flemming/Lindau Nobel Laureate Meetings

“We learn in school that the resolution of a light microscope is fundamentally limited by diffraction to about half the wavelength of light,” said Hell, who gave his lecture on Thursday morning. “And if you want to see smaller things, you have to resort of course to electron microscopy.”

Hell, a physicist who currently serves as a director of the Max Planck Institute for Biophysical Chemistry in Germany, accomplished what was long thought to be the impossible. Using light microscopy and fluorescent labeling of molecules, he invented a super-resolution technique called stimulated emission depletion (STED) microscopy — the work that won him the 2014 Nobel Prize in Chemistry.

“The development of STED microscopy showed that there is physics in this world that allows you to overcome this diffraction barrier,” he said. “If you play out that physics in a clever way, you can see features that are much finer and details that are beyond the diffraction barrier.”

A conventional microscope cannot distinguish objects — say, molecules — that are packed within a space of about 200 nanometers because they all become flooded with light at the same time. Subsequently, a detector will simply record the scattering as a blurry blob of light without being able to image any individual molecules.

Hell got the idea of highlighting one molecule at a time by using fluorescent labeling, while also keeping other molecules in a dark state through stimulated emission. With a phase modulator, he could then force molecules in a doughnut-shaped area to stay dark and in the ground state while those in the center would produce light.

With this discovery, biomedical researchers could now image objects as tiny as proteins on the outside of a virus. For instance, STED microscopy was used to observe a major difference in envelope protein distribution that can be used to distinguish mature HIV that can infect cells versus those immature viruses that cannot.

“The misconception was that people thought that microscopy resolution was just about waves, but it’s not — microscopy resolution is about waves and states,” Hell emphasized. “And if you see it through the eyes of the opportunities of the states, the light microscope becomes very, very powerful.”

Steven Chu referenced Hell’s groundbreaking research during his lecture on Wednesday morning, which focused on his recent efforts in optical microscopy — quite a departure from his previous work in energy during a decade-long sabbatical.

“I sat down fresh out of government with no lab, no students, no postdocs, no money,” said Chu, who served as U.S. Secretary of Energy from 2009 to 2013. “The only thing that I could do was think, and that turns out to be liberating.”


Steven Chu during his lecture. Photo: Ch. Flemming/Lindau Nobel Laureate Meetings

A venerable jack-of-all-trades, Chu received the 1997 Nobel Prize in Physics in yet another field — atomic physics — for his development of laser cooling and trapping techniques. His latest interest in microscopy grew out of a fascination with cell signaling and how dysfunctions in the process can lead to cancer.

“If you’re a cell embedded in an organism’s tissue, you don’t willy-nilly divide — that’s considered very antisocial behavior. You divide when the surrounding tissue says it’s okay to divide,” he described. “But if you willy-nilly divide and say ‘me-me-me,’ that is called cancer.”

Using imaging techniques, the cell signaling pathway can be investigated in detail to target areas that could prevent cancer from developing. Taking Hell’s work in super-resolution microscopy a step further, Chu discussed his use of rare earths embedded in nanocrystals to replace fluorescent organic dyes. A nanocrystal can be doped with 5,000 to 10,000 impurities so it emits a certain color in the near-infrared with a very narrow spectral peak. If each class of nanoparticle is synthesized to produce a different ratio of colors, this creates a spectral barcoding of probes.

The next step is to use nanoparticle probes to image molecules through tissue in a living organism without cutting. Adaptive optics — a technique that originated in astronomy — has been employed in order to take light scattering into account, enabling high-resolution microscopy of mouse brain tissue through an intact skull.

“The question is if you go deeper into the infrared, can you look not through 500 microns but maybe 5 millimeters?” said Chu. “This is an open question we’re working on this. We’ve gotten down to a millimeter but we’ll see.”

One of his ideas involves inserting nanoparticles into cancer cells and watch them over time in order to track which cells metastasize, with the ultimate goal of developing future therapies.

Die vielen Themen des Steven Chu

Im November 2008 erhielt Steven Chu, Direktor des Lawrence Berkeley National Laboratory (LBNL), einen Anruf des frisch gewählten Barack Obama: Er wolle Chu in Chicago treffen. Nach eigener Aussage hatte Chu zunächst keine große Lust, spontan dorthin zu fliegen, ließ sich aber überzeugen, weil Obama sagte, dass er ein wirklich interessantes Angebot für ihn hätte. Zu dieser Zeit hatte Chu das LBNL in nur vier Jahren zu einer Innovationsschmiede für Energietechnologie gemacht. Schließlich trafen sich die beiden Männer, redeten eine Stunde lang – und Chu wurde in der US-Geschichte der erste Minister mit Nobelpreis. Er selbst erzählte diesen Sommer in Lindau von dieser Begegnung.

In seiner vierjährigen Amtszeit etablierte Chu unter anderem ein neues Förderprogramm für erneuerbare Energien mit dem Namen ARPA-E (Advanced Research Projects Agency–Energy). Hierbei geht es um Hochrisikoinvestitionen in Technologien, die zwar voraussichtlich in neun von zehn Fällen zu keinem Durchbruch führen werden. Aber ein Zehntel aller Projekte hat vielleicht die Chance, weitreichende Veränderungen im Energiesektor anzustoßen. Außerdem gründete er drei Forschungsgruppen innerhalb seines Ministeriums, sogenannte „Innovation Hubs“. Chu reaktivierte zudem die Förderung von Sonnenenergie mit dem SunShot-Prorgramm und half bei der Gründung des „US-China Clean Energy Research Centers“ (CERC).

Präsident Obama und sein Minister Steven Chu durchqueren den Blue Room des Weißen Hauses nach der öffentlichen Ankündigung neuer Energiestandards 2009. Chu war derjenige US-Energieminister, der am längsten in diesem Amt blieb, nämllich eine volle präsidiale Amtszeit. Foto:  Pete Souza, White House photographer, Public Domain

Präsident Obama und sein Minister Steven Chu durchqueren das Blaue Zimmer im Weißen Haus nach der Ankündigung neuer Energiestandards 2009. Als Chu vier Jahre später in die Forschung zurückging, war er der am längsten amtierende Energieminister der US-Geschichte – und der einzige Minister mit einem Nobelpreis. Foto: Pete Souza, White House photographer, Public Domain

Bei all diesen Aktivitäten bestand Chus wichtigste Rolle darin, die richtigen Experten an den Tisch zu holen „und anschließend mit Zähnen und Klauen dafür zu kämpfen, dass die Bürokratie sie nicht fertig macht“ (ebenfalls aus seinem Lindau-Vortrag 2015). Während der Deepwater-Horizon Ölpest 2010 bat Präsident Obama seinen Energieminister Chu, dem BP-Konzern beim Versiegeln der unterirdischen Ölquelle zu helfen, obwohl eigentlich der Innenminister zuständig war. Wieder bestand Chus Rolle darin, die passenden Experten zu finden.

Steven Chu brachte seine Neugier und Kreativität, seine Beharrlichkeit und seine Führungsqualitäten als Forscher mit in die Politik. Aber warum war er überhaupt in die Politik gegangen, warum hat er sich das angetan? Die Antwort lautet: Klimaschutz ist für Chu eine Herzensangelegenheit. Er erklärte auf der Lindauer Tagung 2013: „Wenn die Notwendigkeit die Mutter aller Erfindungen ist, dann ist der Klimawandel die Mutter aller Notwendigkeiten.“ Und als Experimentalphysiker war er zur rechten Zeit am rechten Ort, als es in Obamas erstem Kabinett darum ging, Innovationen, deren Finanzierung und neue Zielvorgaben zusammen zu bringen. So forderte der neue Energieminister, dass es bis zum Jahr 2020 Solarmodule geben soll, die ein Watt elektrischer Leistung für einen Dollar produzieren können. Außerdem strebt eine Initiative von Obama und Chu ein amerikanisches Elektroauto an, das erstens nicht mehr als 25.000 US-Dollar kosten darf, zweitens 300 Meilen mit einer „Tankfüllung“ fährt und drittens binnen kurzer Zeit aufzuladen ist.

Steven Chu während einer Podiumsdiskussion auf der Lindauer Nobelpreisträgertagung 2015 zum Thema Interdisziplinarität. Foto: Ch. Flemming/LNLM

Steven Chu während einer Podiumsdiskussion auf der Lindauer Nobelpreisträgertagung 2015 zum Thema Interdisziplinarität. Foto: Ch. Flemming/LNLM

Obwohl Steven Chu in seinem Politikfeld viel anstoßen konnte, ist er doch im Innern ein Grundlagenforscher geblieben: Sogar als Energieminister leitete er noch eine Forschungsgruppe und schrieb nachts und am Wochenende Fachartikel. Seinen Nobelpreis hatte er viel früher erhalten, bereits 1997 im Alter von nur 49 Jahren, für „das Kühlen und Festhalten einzelner Atome durch Laserstrahlen“. Er teilte diesen Physiknobelpreis mit Claude Cohen-Tannoudji und William D. Phillips, die ähnliche Versuche wie Chu und seine Kollegen durchgeführt hatten.

Schon als Doktorand an der University of California in Berkeley hatte Chu einen ausgefeilten Laser gebaut, mit dem er offene Fragen der Quantenphysik angehen wollte, zum Beispiel zur Natur schwacher Wechselwirkungen zwischen Elementarteilchen. Nach Abschluss seiner Doktorarbeit wechselte er zu den berühmten Bell Laboratories in New Jersey, wo er begann, einzelne Atome mit Laserstrahlen extrem abzukühlen und „festzuhalten“. Chu und seine Kollegen entwickelten ein neuartiges Instrument mit insgesamt sechs Laserstrahlen, die jeweils paarweise angeordnet in die drei Raumrichtungen deuteten. In dieser „Falle“ konnten Atome mit bislang unerreichter Genauigkeit studiert werden. Nach einem erneuten Wechsel an die kalifornische Stanford-Universität entwickelte Chu ein „Atomspringbrunnen-Interferometer“, in dem sich Atome im freien Fall studieren lassen, das ermöglicht eine sehr genaue Messung der Schwerkraft, was schließlich zur Entwicklung extrem genauer Atomuhren beitrug.

Schon vor seinem Wechsel ans LBNL 2004 hatte sich Chu dem Studium biologischer Moleküle zugewandt. Seine Arbeitsgruppe schaffte es beispielsweise, kleine Plastikkügelchen an die Enden einzelner DNA-Moleküle zu kleben. Mit Hilfe eines fluoreszierenden Farbstoffs und eines speziellen Lasers konnten die Forscher nun ein solches DNA-Molekül unter dem Lichtmikroskop betrachten und sogar bewegen (es sah aus wie ein Videospiel, und seine Doktoranden machten laut Chu tagelang nichts anderes). Aktuell forscht Chu an vielen Fronten: Sein Team in Stanford schaffte es, die Auflösung eines Lichtmikroskops auf 0,5 Nanometer zu senken. Außerdem konnten die Forscher „live“ den Signalweg eines Proteins namens „Ras“ beobachten, das als Protoonkogen bekannt ist und bei vielen Krebserkrankungen eine wichtige Rolle spielt. Sie fanden heraus, dass die Dimerbildung für die Krankheit eine entscheidende Rolle spielt. Also schlugen sie die Entwicklung von Krebsmedikamenten vor, die einen solchen Zusammenschluss zweier Moleküle verhindern.

Nach seinem vierjährigen „Urlaubssemester“ in der Politik (Chu über Chu) kehrte er nach Stanford zurück und forschte nicht nur zur hochauflösenden Fluoreszenzmikroskopie, sondern interessiert sich auch für Neurowissenschaften – wieder ein neues Themenfeld. An seiner Universität gibt es eine informelle Forschergruppe, die neurowissenschaftliche Fragen diskutiert und Lösungen sucht. Diese Gruppe entwickelte beispielsweise ein Verfahren, mit dem sich einzelne Zellen im lebenden Organismus verfolgen lassen, beispielsweise Krebszellen. Sie verwenden dafür winzige fluoreszierenden Farbstoffpartikel aus Seltenen Erden. In Kombination mit der STED-Methode der Lichtmikroskopie wollen die Forscher nun „dem lebenden Gehirn beim Denken zusehen“. Für diese Aufgabe hat die Gruppe zusätzlich Nanopartikel aus Diamanten entwickelt.

Steven Chu während seines Vortrags 2013 in Lindau: im Hintergrund eine Fotomontage aus dem Satiremagazin The Onion, das ihm unterstellte, er sei nach einer durchzechten Nacht neben einem Solarmodul aufgewacht. Chu, damals noch im Amt, reagierte verschmitzt, dass es

Steven Chu während seines Vortrags 2013 in Lindau: im Hintergrund eine Fotomontage aus dem Satiremagazin The Onion, das ihm unterstellte, er sei nach einer durchzechten Nacht neben einem Solarmodul aufgewacht. Chu, damals noch im Amt, antwortete verschmitzt, dass es “kein Wunder sei, dass sich die Amerikaner in Solarenergie verlieben”. Foto: Ch. Flemming/LNLM

Doch Chu wäre nicht Chu, wenn er nicht noch viele andere Eisen im Feuer hätte. Beim Thema Nanotechnologie befasst er sich nicht nur mit der Bildgebung in der Biologie, sondern auch mit Lithium-Ionen-Akkus. Heute haben diese Akkus meist Anoden aus Silizium oder Graphit, weil Lithium als Anode sich zu stark erhitzt, zu reaktiv ist und sich außerdem ausdehnt, was zum Kurzschluss des ganzen Akkus führen kann. Wenn man eine Lithium-Anode jedoch mit einer hauchdünnen Schicht aus Kohlenstoff-„Kuppeln“ überzieht, kann sie ohne diese störenden Effekte arbeiten – das Ergebnis wäre eine wesentlich effizientere Akku-Bauweise. Das bringt uns wieder zurück zu Chus Zielvorgaben als Energieminister: sichere, leichte und vor allem bezahlbare Akkus nicht nur für Elektroautos, sondern auch für Privathaushalte und sogar für Energieversorger, um Schwankungen bei der Erzeugung durch erneuerbare Energiequellen auszugleichen.

Der vielseitige Steven Chu nahm bislang an fünf Lindauer Nobelpreisträgertreffen teil und hielt insgesamt vier Vorträge: Jeder einzelne Vortrag behandelt völlig unterschiedliche Themen, alle Präsentationen sind informativ und unterhaltsam. Chu hat schon zur Quantenphysik, Molekularbiologie und hochauflösende Mikroskopie geforscht, dann kümmerte er sich um Energietechnologie und Energiepolitik, schließlich engagierte er sich im Klimaschutz (und das eine oder andere Thema habe ich sicherlich vergessen). Auf eines können wir uns jedoch verlassen: Steven Chu wird sich immer wieder mit neuen spannenden Dingen befassen. Wir in Lindau freuen uns, bei künftigen Nobelpreisträgertreffen mehr darüber zu erfahren.

The Many Lives of Steven Chu

In November 2008, President-elect Barack Obama called Steven Chu, director of Lawrence Berkeley National Laboratory (LBNL), and wanted to meet him in Chicago. During his four years at the Berkeley Lab, Chu had turned this government lab into an innovation hub for energy research and technology. At first, Chu was reluctant to fly to Chicago, but Obama explained that his offer was really exceptional. So the two men met and talked for an hour – and Chu became the first Cabinet secretary with a Nobel Prize. Chu tells this story in his own words in his 2015 Lindau lecture.

In his four years as a Cabinet secretary, Chu started a funding programme for “disruptive technology” – energy technology that could change the world, called ARPA-E (Advanced Research Projects Agency–Energy). He established three new Innovation Hubs at the Department of Energy, revitalised photovoltaic and photothermal initiatives with the SunShot programme, and played a crucial role in establishing the U.S.–China Clean Energy Research Center (CERC). In all of this, his main role was to recruit the right experts and then “to block and tackle for them so that the bureaucracy does not drag them down” (also from the 2015 lecture). During the Deepwater Horizon oil spill crisis in 2010, Obama asked Chu to assist BP in closing the sea-floor oil gusher. Again, he helped by recruiting the right experts.

US President Barack Obama and Secretary of Energy Steven Chu walk through the Blue Room of the White House after an announcement of energy standards in 2009. Chu became the longest serving US Secretary of Energy and the only Cabinet member ever with a Nobel Prize. Photo: Pete Souza, White House photographer, Public Domain

US President Barack Obama and Secretary of Energy Steven Chu walk through the Blue Room of the White House after an announcement of energy standards in 2009. Chu became the longest serving US Secretary of Energy and the only Cabinet member ever with a Nobel Prize. Photo: Pete Souza, White House photographer, Public Domain

Steven Chu brought his dedication, persistence and creativity as a researcher to politics. But why did he go into this field in the first place – why did he reinvent himself for yet another “life”? Chu is passionate about climate change and policy. He says: “If necessity is the mother of all inventions, we got the mother of all necessities in climate change.” And as an innovative experimental physicist, he was at the right place at the right time: at the interface between funding, innovation and target formulation: he set the goal to create solar panels that can produce one Watt of electric power for 1 dollar by 2020; an electric car for about 25,000 dollars by 2022, with a car battery that weighs no more than 150 kg, lasts for 300 miles and charges quickly.

Despite his many achievements in politics, Steven Chu primarily is a fundamental scientist with a penchant for application. Even as Cabinet secretary, he still headed a research group and wrote scientific papers on weekends or late at night. Decades earlier, in 1997, he had been awarded the Nobel Prize in Physics for the “development of methods to cool and trap atoms with laser light”, he shared this prize with Claude Cohen-Tannoudji and William Daniel Phillips.

Steven Chu in Lindau during a panel discussion about interdisciplinarity. Photo: Ch. Flemming/LNLM

Steven Chu in Lindau 2015 during a panel discussion about interdisciplinarity. Photo: Ch. Flemming/LNLM

Already during his doctoral research at the University of California in Berkeley, Chu had built a state-of-the-art laser to tackle questions of quantum physics, for instance to find weak interactions between elementary particles. After switching to Bell Labs, he started to work on cooling and trapping single atoms with laser beams. Chu and his team developed their novel method by employing six laser beams in opposed pairs, arranged in three directions: In this “trap”, atoms can be studied with great accuracy. After moving to Stanford, Chu invented an ‘atomic fountain interferometer’: with atoms in free fall, gravitation can be studied rigorously. This technology helped to build very precise atomic clocks.

Even before Chu became LBNL director, at Stanford he had switched from single atoms to biological material. One example: He managed to attach tiny plastic spheres to single DNA molecules, and with the help of fluorescent dye and laser beams, his team could watch the molecules under a light microscope. Currently, his scientific interests cover several areas: his team was able to improve the resolution of light microscopes down to 0.5 nanometers – while he was serving as Secretary of Energy in 2010. The researchers were also able to observe signalling pathways of Ras proteins, proto-oncogenes that play an important role in many human cancers. They found that Ras dimer formation (a complex formed by two molecules) plays a crucial role, so they proposed cancer drugs that should target dimer formation. Here you can hear Chu talk about molecular biology – as if he had never worked in any other field!

After his “four year sabbatical” in politics (from his 2014 video), Steven Chu returned to Stanford and became interested not only in super-resolution microscopy, but also in neuroscience. Together with researchers from his “informal neuroscience group”, they were looking for ways to trace a single cell in a living organisms, and came up with different coloured fluorescent particles based on different rare earths. Combined with STED microscopy, they are now working on tracking membrane proteins in the brain during synapse activity. For similar purposes, they also invented fluorescent diamond nanoparticles.

Steven Chu during his 2013 Lindau lecture, showing a photo composition from the satirical magazine the Onion, claiming that the Secretary of Energy woke up next to a solar panel after a night of drinking. Chu replied in an official statement that closed with the words

Steven Chu during his 2013 Lindau lecture, showing a photo composition from the satirical magazine the Onion, claiming that the Secretary of Energy woke up next to a solar panel after a night of drinking. Chu replied in an official statement that closed with the words “so it’s no surprise that lots of Americans are falling in love with solar”. Photo: Ch. Flemming/LNLM

As always, Steven Chu has many irons in the fire. He is not only working on nanoparticles for biological imaging, but also on a layer of interconnected carbon domes: to protect the lithium anode of a next-generation lithium battery. Present-day lithium batteries all rely on graphite or silicon anodes, because lithium is too reactive, produces too much heat, and lithium ions expand on the anode during charging, causing many problems that can even short-circuit the battery. But with a layer of these novel “nanospheres”, a much improved lithium battery comes within reach. This brings us full circle to one of Chu’s targets as Secretary of Energy: safe, efficient and – hopefully – affordable rechargeable batteries, not only for cars, but also for houses or even utility companies.

Steven Chu attended five Lindau Nobel Laureate Meetings, giving four lectures – educating and entertaining with every single one. He has worked in the fields of quantum physics, molecular biology, super-resolution microscopy, energy technology development, and finally energy politics (I probably forgot to mention a few). But I’m sure that with these many lives, he has a few more up his sleeve, so we in Lindau are looking forward to hear about them in the meetings to come.

Die Mainauer Deklaration 2015 zum Klimawandel

„Mit dieser Deklaration wollen wir zeigen, wie groß die Bedrohungen durch den Klimawandel bereits sind, sowie Lösungswege aufzeigen“, erklärt Brian P. Schmidt, Sprecher der Nobelpreisträger, welche die Mainauer Deklaration 2015 zum Klimawandel heute auf der Insel Mainau unterzeichnet haben. Als Wissenschaftler sehe er „eine moralische Verpflichtung, sich bei einem Problem mit so weitreichenden Folgen zu Wort zu melden“. Schmidt traf sich am Donnerstag mit vier weiteren Unterzeichnern, es war der vorletzte Tag des 65. Lindauer Nobelpreisträgertreffens. Folgende fünf Nobelpreisträger diskutierten vor Journalisten diese globale Bedrohung und Aufgabe: Steven Chu, ehemaliger US-Energieminister unter Präsident Obama, George Smoot, David Gross, Peter Doherty und natürlich Brian Schmidt, ein australisch-amerikanischer Astrophysiker.

In der Deklaration heißt es zum Thema Klimawandel: „Wenn wir dem nicht entgegensteuern, wird die Erde schließlich nicht mehr in der Lage sein, den Bedürfnissen der Menschheit gerecht zu werden und unsere ständig zunehmende Nachfrage nach Nahrung, Wasser und Energie zu decken. Und dies wird zu einer umfassenden menschlichen Tragödie führen.“ David Gross berichtete in diesem Zusammenhang von seiner Reise nach Ladakh im Himalaja: „Diese Länder, die alle von den großen Flüssen Asiens leben, die im Himalaja entspringen, sind sehr anfällig für Wasserknappheit aufgrund schmelzender Gletscher. Und solche Regionen leiden zuerst.“ Gross führt weiter aus, dass es durchaus möglich sei, dass künftig um Trinkwasser Kriege geführt werden, und zwar in vielen Gegenden der Welt. Peter Doherty zitiert seinerseits aus dem jüngsten Bericht der Lancet Kommission: „Diese Forscher sagen einen möglichen Zusammenbruch der Zivilgesellschaft im 21. Jahrhundert aufgrund des Klimawandels voraus. Und wie immer sind es die Ärmsten, die am meisten darunter leiden werden.“

Alle Nobelpreisträger sind sich an diesem Morgen einig, dass die Beweise für einen Klimawandel durch Treibhausgase erdrückend sind. „Bei den einzelnen Wirkmechanismen gibt es vielleicht noch Unklarheiten im Detail“, meint Steven Chu. „Das ist mit den 1950er Jahren vergleichbar, als kein Mensch vorhersagen konnte, welche Konsequenzen das Rauchen hat – aber die Lungenkrebsrate stieg so rapide, dass die Politik handeln musste.“ Heute kann man das statistische Krebsrisiko aufgrund des jeweiligen Zigarettenkonsums recht genau vorhersagen. „Aber wollen wir wirklich fünfzig Jahre warten, um dann genau zu wissen, was der Klimawandel mit uns macht?“ – wohl eher eine rhetorische Frage. Chu ergänzt: „Sie warten auch nicht ab, bis ihr Haus in Flammen steht, damit sie endlich eine Feuerversicherung abschließen.“ Peter Doherty verweist auf die Diskussionen über das HI -Virus in den 1980er Jahren, als einige Forscher den Zusammenhang zwischen Virus und AIDS-Erkrankungen anzweifelten. Doch als der Lebenszyklus des Virus vollständig analysiert war und mithilfe von Medikamenten unterbrochen werden konnte, verstummten die meisten Kritiker.


Einige der unterzeichnenden Laureaten auf der Bühne. Ch. Flemming/Lindau Nobel Laureate Meetings.

Some of the signatories of the Mainau Declaration 2015 on Climate Change on stage just after the signing. Image: Ch. Flemming/Lindau Nobel Laureate Meetings.

Doherty definiert nun den Unterschied zwischen Skeptizismus und Leugnen: „Ein Skeptiker spricht mit anderen Forschern, er schaut sich die Daten an. Aber wenn jemand ein Leugner ist, dann lehnt er einfach alles ab, was zu diesem Thema veröffentlicht wird.“ Steven Chu ergänzt, dass heutzutage die besten Daten zum Klimawandel von Satellitenaufnahmen stammten. Und diese zeigten eindeutig das weltweite Schmelzen der Gletscher, von Grönland und der Arktis, über die Alpen und den Himalaja bis hin zu Teilen der Antarktis. „Aber es gibt sogar im US-Kongress Leute, die sich weigern, Satellitenbilder zu betrachten“, erinnert sich Chu an seine Zeit in der Politik. „Das nenne ich eine Verleugnung von Tatsachen.“

Die unterzeichnenden Nobelpreisträger sind sich einig, dass „die Welt rasche Fortschritte bei der Senkung aktueller und zukünftiger Treibhausgasemissionen erzielen (muss), um die wesentlichen Risiken des Klimawandels zu minimieren“, so die aktuelle Deklaration. Die so angesprochenen Politiker treffen sich ab dem 30. November in Paris auf der nächsten UN-Klimakonferenz. „Für eine Kehrtwende brauchen wir ein halbes Jahrhundert“, erklärt Chu. Zwar wird die Technik, die man für erneuerbare Energiequellen benötigt, immer preiswerter, aber solche Entwicklungen bräuchten einfach ihre Zeit. „Eines Tages wird diese Technik im Wettbewerb mit Gas und Öl problemlos bestehen können.“

George Smoot ergänzt: „Für diesen Trend muss sich auch eine Infrastruktur bilden. Aber am Ende haben wir nicht nur eine verbesserte Infrastruktur, sondern auch eine Menge neuer Jobs.“ Doherty führt an, dass Politiker nur handeln würden, wenn die Wähler sie dazu drängten, denn „nichts sei ihnen wichtiger als Wählerstimmen“. Also müssten die Wissenschaftler in erster Linie die Wähler überzeugen. Schmidt widerspricht teilweise: Zwar sei es richtig, dass man die Wähler über das Thema Klimawandel informieren müsse, aber viele Politiker verstünden durchaus, dass sie eine große Verantwortung tragen – „es geht ihnen nicht nur um Wählerstimmen“.

Insgesamt sind die Laureaten verhalten optimistisch, zum Beispiel, wenn sie die gemeinsame Erklärung der USA und China zum Thema Klimawandel ins Feld führen. „Diese Erklärung zeigt, dass sich die Kluft zwischen entwickelten und Schwellenländern bei diesem Thema überbrücken lässt“, erläutert Smoot. Diese Kluft war eines der Hauptprobleme der vergangenen UN-Klimakonferenzen in Kopenhagen und Rio de Janeiro. Die Nobelpreisträger hoffen, dass die Menschheit der Herausforderung des Klimawandels mit einer Mischung aus gezielter Politik und technischer Entwicklung begegnen kann. Doherty hierzu: „Wir werden dieses Problem auf der politischen Ebene und durch technische Innovationen lösen – letztere bringen auch unsere Wirtschaft nach vorne.“ Zum Abschluss meint Chu: „Ich bin sowohl in technischer als auch in politischer Hinsicht ein Optimist. Die Menschheit ist durchaus in der Lage, eine Lösung zu finden, allerdings ist es ein Rennen gegen die Zeit.“ Denn eine Kehrtwende wird immer dringender, und je mehr Zeit verstreicht, um so höher werden ihre Kosten.

The Courage to Venture Beyond: Of Polymaths and Multidisciplinarians

Correspondence to:

Jalees Rehman

Department of Medicine and Department of Pharmacology

University of Illinois at Chicago

Email: jalees.rehman[at]gmail[dot]com



Goethe’s symmetric colour wheel with associated symbolic qualities (1809): – Public Domain Image


“Focus! Focus! Focus! Create a narrow area of scientific expertise in which you excel and develop a national or international reputation for excellence!”

Established scientists often share this sort of advice with their younger peers who are about to embark on their academic career. It isn’t a bad advice and I have known many scientists who have succeeded in academia by following it. Every day, more than a thousand original scientific papers are published. A major aspect of scientific research is placing your own findings into context of already existing knowledge. How is your work different from what is already known? What impact will your work have in your scientific field? Have you developed a new tool or concept that will be of significant value to your peers? To engage in cutting-edge research therefore requires that one stays abreast of the amassing scientific literature, carefully curating which of the numerous published findings are most relevant to one’s own work.

A scientist with too broad of an area of scientific expertise or too many distinct scientific interests may drown in the ocean of newly generated knowledge. Keeping up with the scientific literature and actively conducting experiments in multiple scientific disciplines may  take up so much effort that it leaves little time and resources to dig deeply and unearth high-impact knowledge in any one area.

Some scientists devote decades of research to studying a single protein in a cell. Considering the complexity of biological phenomena, a single protein X can supply a seemingly inexhaustible reservoir of research questions. How is the synthesis of the protein regulated? Which molecular pathways lead to the degradation of the protein? Which are the proteins that interact with X? Are there specific environmental signals which control the expression of the gene which is transcribed and translated into protein X? How does a transgenic mouse behave when protein X levels are over-expressed in selected organs or tissues? Answering each one of these questions by carefully interrogating all the detailed molecular mechanisms involved can take several years. A scientist who uses her creativity and perseverance in order to develop unique molecular tools and animal models to address these questions will likely receive national or international recognition and a steady stream of research funding for her expertise in all matters relating to protein X.

Yet there are a number of scientists who forsake this traditional path. Such a scientist may start out studying protein X in a cell but after discovering that biomechanical forces regulate the levels of protein X, shift the focus of her research to cellular biomechanics. Her work on biomechanics may then lead to the engineering of novel devices and tools to control biomechanical forces, to pursue broader questions regarding how cells sense mechanical forces and even address philosophical questions about the validity of applying physical concepts of force and tension to biological systems. Protein X may have been the initial trigger for the research but as her research progresses, her interests become broader and integrate various disciplines ranging from molecular biology to engineering and biophysics and protein X may just become a distant memory. Such a multidisciplinary path comes with a greater risk of failure because the scientist will not have any circumscribed area of expertise on which to build an academic reputation and because every transition from one discipline to another requires that the scholar devote an extraordinary amount of effort to acquiring skills and knowledge in the new discipline. But the potential for ground-breaking discoveries is also greater because the scholar’s checkered background and intellectual diversity could lead to a cross-fertilization of ideas from various disciplines and create a whole new area of research.

Polymaths and Multidisciplinarians

According to the Oxford English Dictionary, the expression “polymath” refers to “a person of great or varied learning; a person acquainted with many fields of study; an accomplished scholar”. This is a rather broad definition which does not give any specific guidelines as to what qualifies as being “acquainted with many fields of study”. Does one need formal academic training in multiple areas of study to be considered a polymath? Is it a requirement to make original and creative contributions to a multiple disciplines? Perhaps even garner national and international recognition?

When prompted to name individuals who are polymaths, people educated in the European tradition often associate “polymaths with the Renaissance because that era symbolizes the integration of the arts, humanities and sciences and has led to “Renaissance man” being used as a synonym for polymath. Leonardo da Vinci (1452-1519) is a prime example of such a polymath, known not only for his paintings such as The Last Supper and the Mona Lisa, but also his numerous inventions and innovative designs of flying machines as well as his extensive anatomical studies based on the dissection of human corpses.


Studies of the Embryo by Leonardo da Vinci: Photography by Luc Viatour via Wikimedia Commons

Studies of the Embryo by Leonardo da Vinci: Photography by Luc Viatour via Wikimedia Commons

The German poet Johann Wolfgang von Goethe (1749-1832) is also a front-runner in the pantheon of polymaths because of his interests in geology, paleontology and optics. During his lifetime, Goethe assembled one of the largest collections of rocks, minerals and fossils ever owned by an individual person, consisting of 18,000 specimens! Even though he is revered as the greatest poet of the German language, Goethe’s longest published work is his treatise on a theory of color, the Farbenlehre. He devoted two decades of his life to studying light and he thought that this 1000-page tome would be his most meaningful contribution to humankind.
In the Farbenlehre, Goethe vehemently disagreed with Newton about the nature of light. According to Newton, white light was a heterogeneous composite of colors and darkness was the absence of light. Goethe, on the other hand, felt that white light was a homogenous entity and that darkness was the polar opposite of light and not just its absence. Goethe also ascribed aesthetic qualities to specific colors such as “beautiful” to red and “useful” to green.

Goethe’s theory of color is not a scientific theory in the conventional sense because it did not offer any clear scientific hypotheses that could be tested and falsified by experiments. This did not prevent Goethe from viciously attacking Newton and those who accepted the Newtonian theory of light and color. In fact a whole portion of Goethe’s Farbenlehre is titled “Polemics” and attempts to document the incompetence and errors of Newton. Some of Goethe’s attacks are so embarrassing that many editions and translations of the Farbenlehre completely omit this portion. After it was published, the Farbenlehre did not gain much traction with scientists in the 19th century because Newton had made a far more compelling case for describing the physical nature of light. However, in recent decades, the Farbenlehre has experienced somewhat of a revival in the academic world. Recent works such as “Goethe’s Way of Science” and “Goethe Contra Newton”, authored by philosophers, physicists and other scholars, have pointed out that Goethe‘s approach to color and light was rooted in his background as a poet. He was not studying light in its physical form but the perception of light, and the Farbenlehre even contains extensive passages about the nature of scientific paradigms. His work is now experiencing a renaissance, if you will, as it is being re-evaluated by psychologists, cognitive scientists and philosophers of science.

Goethe and da Vinci are excellent examples of the creative synergy that arises when individuals are actively engaged in multiple disciplines. By approaching light and color from the perspective of a poet, Goethe stumbled on important scientific questions revolving around the perception of light which were quite distinct from the questions raised by Newton’s work which centered on the physical nature of light. And Goethe’s work as a writer also greatly benefited from his scientific endeavors. It is estimated that Goethe used a vocabulary of roughly 90,000 words in his work, four to five times more than the vocabulary of an average educated German living today and also substantially more than the vocabulary of Shakespeare (estimated at about 30,000 words). It is very likely that Goethe’s extensive readings and work in geology, paleontology, optics as well as his work as a cabinet minister and civil servant greatly enriched his vocabulary and allowed him to tap into words and metaphors that may not have been easily accessible to other poets.


Goethe is called the 'Prince of Poets' in Germany but may his way of interdisciplinarity be a relic of times long gone? Image: motograf (CC BY 2.0)

Goethe is called the ‘Prince of Poets’ in Germany but may his way of interdisciplinarity be a relic of times long gone? Image: motograf (CC BY 2.0)

Are the da Vincis and Goethes anachronisms of the past? Many of us still revere the brilliance of the individual who straddles and demonstrates excellence in multiple disciplines and we continue to recognize the value of new knowledge and creative ideas that are formed when supposedly distinct disciplines converge. But we also need to recognize that the nature of knowledge and disciplines is changing. The painter Leonardo da Vinci was one of the few individuals in Europe who was allowed to dissect human corpses and conduct anatomical studies. If he were to design “flying machines” today, it would be reasonable to expect that he first receive training in aeronautical engineering or at the very least perform a comprehensive review of existing designs and document whether his designs would abide by contemporary standards of efficiency and safety.

Our bar for what is an acceptable scholarly contribution today is very different from what it was five centuries ago. Peer review in its current form may have its flaws but it does prevent individuals from pontificating about scholarly topics based on idiosyncratic standards and whims. If Goethe had spent two decades studying the nature of light today and viewed his work as a scholarly endeavor, we would expect him to regularly present his findings at conferences, publish peer reviewed abstracts and papers, and solicit critical input from other scientists at every stage of his work to test whether it was truly up to par.

Because of the dizzying growth of knowledge and technologies available to the modern scholar, most contemporary scientific research is conducted by individuals who are members of teams, in which each team member has years or even decades of training to achieve the required level of mastery. This shift in the nature of how we generate knowledge in order to accommodate the growing complexity of knowledge also requires that we rethink our veneration of the age-old “polymath”, a person who as an individual achieves recognition and fame in a multitude of disciplines. A more apt term for today’s polymath may be a “multidisciplinarian”, an individual who is actively engaged in multiple scholarly, artistic or creative disciplines either as an individual or as a member of multidisciplinary teams.

Martin Chalfie received the 2008 Nobel Prize in Chemistry for discovering and developing green fluorescent protein and is a great example of a contemporary multidisciplinarian. He sees himself as a neurogeneticist, but routinely collaborates with physicists, engineers, biologists and physicians to study sensors.

“I should emphasize that I have not become an expert in each of these areas.  In fact, one of the terrific consequences of working in several different areas is that I get to learn from and work with other scientists “, he says in a recent essay for the Lindau blog.

Using a newer expression such as multidisciplinarian may also help remove some of the other connotations associated with the polymath. The historical association of polymaths with the Renaissance also links it to an age of patriarchy in which men but not women were considered to be scholars. The expression “Renaissance man” as a synonym for polymath reminds us of this gender bias. When the staff of the British magazines The Economist and Intelligent Life profiled 20 contemporary polymaths, they did not include a single woman on the list. The British law professor and novelist Alexander McCall Smith made the list, whereas the accomplished philosopher, novelist, essayist and professor of creative writing Rebecca Goldstein did not.

Merely switching from the expression “polymath” to “multidisciplinarian” is obviously not going to change existing prejudices or biases but it symbolizes that a contemporary view of multidisciplinarity ought to be more inclusive and take into account a team-based approach to scholarly endeavors than historical concepts which primarily centered on individuals.

The Cornerstones of Multidisciplinarity: Courage and Humility

How do we define multidisciplinarity today? The very nature of multidisciplinarity defies a precise definition, but a key feature of multidisciplinarity is the active engagement in scholarly, artistic or creative endeavors involving multiple disciplines. Active is the key word here. We would probably not consider a molecular biologist who enjoys watching TV documentaries about quantum physics and listens to classical music a multidisciplinarian. A more active engagement would take the form of conducting experiments, presenting papers or performing on stage. Such active engagement also comes with the risk of rejection and failure. This brings us to one of the key characteristics of a multidisciplinarian: courage.

By leaving the beaten path, the multidisciplinarian will invariably find herself in a situation where she is a novice. A physicist who embarks on studies of epigenetic regulation in cells, mathematicians who begin writing poetry or physicians who engineer novel devices not only have to learn a whole new set of skills, they also have to confront doubts that some of their specialist colleagues have regarding their qualifications. More established peers with narrow areas of expertise may reject the ideas of the multidisciplinarian because these are plain naïve, or because they be too far ahead of their time. Physicians who work as basic scientists are often plagued by self-doubt, not knowing whether they can achieve true excellence in medicine and science. The intellectual curiosity and restlessness which triggers the desire to venture beyond the boundaries of one’s primary discipline can only be sustained with a strong measure of courage and at times even over-confidence to overcome the inevitable episodes of disappointment, rejection and failure. On the other, it is equally important that this courage and over-confidence not turn into arrogance. The courage of a multidisciplinarian has to be paired with the humility of recognizing one’s own limitations and seeking appropriate guidance in order to overcome these limitations.  The lack of introspection and humility in Goethe’s polemics against Newton make it very difficult to see Goethe as a role model for multidisciplinarians.

The physicist Steven Chu is a multidisciplinarian who epitomizes both courage and humility. He received the Nobel Prize for Physics in 1997 for developing methods to cool and trap atoms with laser light, but the breadth of his research interests are astonishing. Chu has introduced methods to visualize and manipulate single biomolecules, measure the force on actin filaments inside a cell and the mechanisms of how ribosomes “proofread” to ensure the accuracy of translated proteins, all in collaboration with biologists and physiologist from all around the world. One of the most remarkable demonstrations of his courage to take on new challenges was his acceptance of the post to become the U.S. Secretary of Energy in 2009. During his tenure as the head of the Department of Energy, there was a doubling of renewable energy deployment in the U.S. and solar energy deployment even increased 10-fold.

Despite these extraordinary successes in so many disciplines, he retains a core sense of humility and says “I have been a scattered dilettante for my entire life”.

Encouraging Multidisciplinarity in a Scientific Laboratory

As appealing as the idea of multidisciplinarity may sound, implementing it in a contemporary scientific environment can be challenging. It takes years of meticulously designed experiments to address specific scientific questions. How can one afford to vacillate between scientific disciplines, arts and humanities and still end up with tangible, defined scientific results?

Eric Betzig is a physicist who received the 2014 Nobel Prize in Chemistry for his ground-breaking work on super-resolution microscopy which has allowed biologists to study the interactions of individual protein molecules inside a cell. Betzig clarifies that multidisciplinary scientific work does not mean giving up focus. Instead, periods of intense focus alternate with periods of searching for inspiration from other disciplines.

“In my personal experience, it has been valuable at certain times of my life to seek out information and ideas across disciplines, and at other times to focus monomaniacally in isolation on a single problem.  The former is necessary to make sure I choose the right problem and have the right tools at my disposal, and the latter is necessary to force both my conscious and sub-conscious mind to give 100% effort to finding an answer”, he says.

William Moerner, who shared the 2014 Nobel Prize in Chemistry with Eric Betzig, describes a deeply personal relationship with the arts, especially music. In his experience, the listening to music and performing music excites and stimulates the brain. Like Chalfie, he too, elaborated on his views on interdisciplinarity in a short essay for the Lindau blog.

Each multidisciplinary scientist has to develop her own path to grapple with the challenges of multidisciplinary work and many scientists may find a more focused scientific career more appealing than the life of a “scattered dilettante”. In my own cell biology laboratory, we try to foster multidisciplinary thinking without necessarily forcing it onto my lab members. At the end of a weekly laboratory meeting in which experimental data is presented, we devote a brief period of time to discussing a book (fiction or non-fiction) that a lab member has recently read or touching on philosophical questions that relate to the broader scientific enterprise such as the nature of causality or experimentation. These are not meant to be exhaustive discussions but just serve as gentle nudges that it may be fun to engage in various creative and intellectual enterprises outside of cell biology. More recently, I asked my graduate students to write science-related haikus.

Megan Rexius-Hall is a bioengineering Ph.D. student who designs microfluidic devices to study intercellular communication and is specifically asking the question of how stem cells undergoing differentiation into a mature cell type communicate with their undifferentiated neighbors:


Our nearest neighbors
By their fate or commitment

– Megan Rexius-Hall (Ph.D. student in Bioengineering at the University of Illinois at Chicago)


Sarah Krantz is a Pharmacology Ph.D. student investigating whether inflamed cells activate anti-inflammatory mechanisms to ensure that there is some defined endpoint to the inflammatory process.


Hot red fire burns strong
Searing foes but for too long
Calls rain and lives on

–    Sarah Krantz (Ph.D. student in Pharmacology at the University of Illinois at Chicago)


I am not sure that there is a direct tangible benefit of encouraging graduate students to write haikus or reading books outside of science. The students definitely learned to appreciate the power of language, imagery and metaphors. Distilling the essence of their research project down to a three verse haiku may also help them remember the “big picture” of their respective projects. But the most important feedback I received from the students was that they enjoyed thinking about the haikus and tinkering with the words to perfect their poem. Isn’t it the joy of discovery and playful tinkering that makes us want to be scientists?


Note: This essay is part of a series of articles on the Lindau Nobel Laureate Meetings Blog which constitute the Multidisciplinarity Forum. Please also read the post “Thoughts on Multidisciplinarity” by the Nobel Laureate William Moerner in which he describes how the importance of multidisciplinarity in his scientific work and the importance of music and theater in his life as well as the essay “Forced Multidisciplinarity” by the Nobel Laureate Martin Chalfie in which he writes about the excitement he feels when engaging in multidisciplinary work, often in collaboration with other scholars.

We encourage you to share comments about your own thoughts and experiences with multidisciplinarity below. And if you want, please feel free to post haikus about your own scientific work!


4 Young Scientists and an Important Topic: Climate Change

Pope Francis’ second encyclica ‘Laudato si’ (Italian for “Praise be to you”) is currently being discussed around the globe. Whereas the scientific community largely agrees that climate change is caused by human civilisation, there are still some deniers out there. In terms of its contents, the encyclica isn’t that revolutionary: its subtitle is “On the care for our common home”, and it states that the behaviour of humankind could be interpreted as suicidal from a distance, and that climate change is one of the most pressing problems we face.

But it’s remarkable that Pope Francis considers this topic so important that he is using his tremendous influence to promote it, thus becoming quite political himself. The reactions were accordingly: before, when countless lobbyists visited him, and after, when his newest encyclica was discussed all around the world – showing that his effort has a positive effect for the right cause. Some politicians were almost to quick to join in, showing the general public only one thing: that everything that’s being done is obviously not enough.

The young scientists aren’t waiting for politicians to act, they’re right in the middle – not only of this topic, but already searching for solutions.


Noel Baker, Foto: privat

Noel Baker

For Noel Baker (29), USA, the topics sustainability and alternative energy sources were so important that she chose engineering for her career, to be able to help with practical solutions. She now has a PhD in Mechanical Engineering and is working at NASA’s Langley Research Center in Hampton, Virginia. She is currently compiling preciser climate change projections:

„My research intention is to reduce these uncertainties by using NASA satellite data and other climate observations to evaluate the quality of climate models, then create improved climate projections to help communities better plan for the future.“

Noel Baker faces these problems right on her own doorstep, “… in communities such as mine—near NASA Langley in Hampton, Virginia— where sinking land and rising sea levels combined with vulnerable coastal infrastructure have created a dire situation.” She hopes to discuss some of these topics at the Lindau Nobel Laureate Meeting, for instance with Steven Chu, who gave the lecture “The Energy and Climate Change Challenges and Opportunities” at the 2013 meeting.


Benjamin Wirth_Artikelbild

Benjamin Wirth

Benjamin Wirth (28), from Germany, is working at the Leibniz Institute for Agricultural Engineering in Potsdam near Berlin. His specialities are sustainable energy sources and waste water technologies. “My research focuses on a newly re-discovered technique turning biomass and highly wet residual streams into valuable renewable carbon for soil and energy called hydrothermal carbonization.” Wirth, who has a Masters in Science, also thinks that the most pressing challenge is the reduction of carbon dioxide in the atmosphere to slow down global warming.

“Our soil carbon is diminishing and global warming is reality. So it is enormously important to develop techniques that can save on fossil fuel and maybe produce valuable carbon for different use – soil, energy, materials, or maybe even combined!”

Benjamin Wirth is looking forward to interdisciplinary discussions on these topics, and to networking for future projects.

Both young scientists are typical representatives of the majority of the young scientists at the 65th Lindau Nobel Laureate Meeting: the majority in a non-representative survey states that the most pressing problems are climate change and environment protection, followed by peace, energy supply and poverty reduction, according to a survey. Although these topics are partly overlapping, there is still a discernible trend.


Mallory Ladd, Foto: privat

Mallory Ladd

Mallory Ladd (27), also from the US, works at the Oak Ridge National Laboratory at the University of Tennessee and explains how the Arctic is a dramatic example of the consequences of global warming: the Artic heats up twice as fast as the rest of the globe. In her PhD thesis, she analyses the quantitative and qualitative variations of nitrogen in Alaskan ice. “More specifically, my goal is to develop a sensitive and robust high performance mass spectrometry workflow that will characterize how low molecular weight soil organic nitrogen compounds (amino acids, amino sugars, etc.) vary across a landscape gradient, at different depths, and warming conditions.” Mallory Ladd would like to talk to Steven Chu about his time as U.S. Secretary of Energy and about his ideas on renewable energy sources. She says about climate change:

“We can’t afford to pretend that our changing climate isn’t already or won’t at some point impact every aspect of every life on this planet. Science needs a spot at the policy table, and needs to be given the opportunity to be heard.”


Serge Alain Fobofou Tanemossu, Foto: Falling Walls Konferenz Berlin

Serge Alain Fobofou Tanemossu, Foto: Falling Walls Conference, Berlin/Germany

Serge Alain Fobofou Tanemossu (28), a chemist born in Cameroon, will be a panelist in Kurt Wüthrich’s Master Class (NMR Spectroscopy and Magnetic Resonance Imaging, from Physics to Medical Diagnosis). He is working at the Leibniz Institute of Plant Biochemistry in Halle, Germany, and is searching for plant-derived active agents for future drugs. “The ultimate goal of my research is to discover new bioactive compounds against HIV, cancer, helminths, and Alzheimer’s diseases from medicinal plants.” Fobofou Tanemossu is looking forward to networking in the science community in Lindau. He thinks that global warming and the various present-day wars are the greatest problems of our times. “It will be the responsibility of scientist to make breakthrough in human and environmental friendly topic (food, new energy, etc).” And Serge Alain Fobofou Tanemossu has a political message as well:

“(…) our leaders should direct all efforts towards the respect of our environment and well-being.“

Pope Francis says that we need a new, worldwide solidarity to solve our most pressing problems. Noel Baker directs a similar plea towards the scientific community, “…that scientists are representatives of the whole world, not just their home country, and together we strive to benefit all of mankind.“


Steven Chu bei der 64. Lindauer Nobelpreisträgertagung, Foto: Ch. Flemming/Lindau Nobel Laureate Meeting

Steven Chu holding his lecture at the 64th Lindau Nobel Laureate Meeting. Photo: Ch. Flemming/Lindau Nobel Laureate Meetings

Steven Chu’s 2015 lecture at the 65th Lindau Nobel Laureate Meeting will be “A Random Walk in Science”. There will also be a Science Breakfast with Chu, “Feeding the 9.6 Billion”, presented by Adam Smith, Chief Scientific Officer of Nobel Media AB, Sweden.

Slider image: United nations Photo (CC BY-NC-ND 2.0)


4 Young Scientists und ein großes Thema: Klimawandel

Die Enzyklika „Laudato Si“ von Papst Franziskus schlägt Wellen. Was für die wissenschaftliche Community längst gesetzte Fakten sind – die von uns Menschen gemachte Erderwärmung und ihre Folgen – wurde und wird immer noch von verschiedener Seite geleugnet. Die Verlautbarungen des Papstes sind nicht an und für sich revolutionär: Man müsse das gemeinsame Haus bewahren, unser Verhalten könne von außen betrachtet selbstmörderisch wirken und der Klimawandel sei eine der wichtigsten aktuellen Herausforderungen an die Menschheit. Bemerkenswert in der Außenwirkung ist, dass der Papst diese Probleme so ernst nimmt, dass er dafür seine Autorität und sein Amt in die Waagschale wirft. Sowohl die Aktivitäten im Vorfeld, als er von Lobbyisten aller Seiten Besuch erhielt, als auch die Reaktionen nach Verkündigung der Enzyklika zeigen, dass sein Einsatz Symbolwert hat und der Sache dienlich ist. Eilige Versicherungen einiger PolitikerInnen überzeugen die ZuschauerInnen nur noch mehr davon: Die bisherigen Schritte sind zu klein, die Absichten zu halbherzig.


Die Young Scientists warten nicht auf die Politik, sie sind bereits mittendrin – im Thema und an der Erforschung und Lösung der Probleme.


Noel Baker, Foto: privat

Noel Baker, Foto: privat

Im Fall von Noel Baker (29), Ph.D. in Mechanical Engineering aus den USA, die am NASA Langley Research Center (Hampton, Virginia) arbeitet, führte das Engagement für Nachhaltigkeit und alternative Energieträger soweit, dass sie sich für eine Ingenieursausbildung entschied, um als Expertin an der Lösung der aktuellen Probleme mitwirken zu können. Ihr momentanes Forschungsgebiet ist die möglichst präzise Vorhersage über die zukünftige Klimaentwicklung.

„Mit meiner Forschung möchte ich die Ungenauigkeit solcher Vorhersagen reduzieren. Anhand von Satellitendaten der NASA und weiteren Klimamessungen kann ich dann die Qualität von Klimamodellen beurteilen. Auf dieser Grundlage werde ich hoffentlich verbesserte Prognosen abgeben können, die wiederum den betroffenen Regionen mehr Planungssicherheit geben sollen.“

Noel Baker hat die Probleme in ihrer Heimat direkt vor Augen. „Zum Beispiel die Region, in der ich wohne, in der Nähe des Langley Research Center der NASA in Hampton, Virginia: Der steigende Meeresspiegel, in Kombination mit absackenden Böden und einer weitgehend ungesicherten Küste, haben dort bereits zu einer sehr kritischen Situation geführt.“ Sie hofft auf interessanten Austausch zum Thema, beispielsweise bei einem Gespräch mit Steven Chu, der auf der Lindauer Nobelpreisträgertagung 2013 eine Lecture zum Thema „The Energy and Climate Change, Challenges and Opportunities“ gab.

Benjamin Wirth (28), Master of Science aus Deutschland, arbeitet am Leibniz Institute for Agricultural Engineering Potsdam im Bereich Erneuerbare Energien und Abwasser-Technologien: „In meiner Forschung konzentriere ich mich auf eine alte, neu entdeckte Technik, um aus Biomasse und nassen Biomasseabfällen hochwertigen Kohlenstoff sowohl für die Ackerböden als auch für die Energiegewinnung zu erzeugen. Dieses Verfahren nennt man ‘hydrothermale Karbonisierung’, das bedeutet soviel wie ‘wässrige Verkohlung bei erhöhter Temperatur’.“


Benjamin Wirth_Artikelbild

Benjamin Wirth, Foto: privat

Auch Wirth sieht es als dringlichste Erfordernis, den CO2-Gehalt in der Atmosphäre zu verringern und die Erderwärmung zu bremsen:

“Die globale Erwärmung ist eine Realität, gleichzeitig nimmt der Kohlenstoffgehalt in den Böden ab. Deshalb ist es unverzichtbar, dass wir einerseits fossile Brennstoffe einsparen und andererseits wertvollen Kohlenstoff auf anderem Wege herstellen – für die Ackerböden, zur Energiegewinnung, für neuartige Materialien, oder alles gleichzeitig.“

Benjamin Wirth freut sich auf den interdisziplinären Austausch und die Gelegenheit, Beziehungen für zukünftige gemeinsame Forschungsprojekte zu knüpfen.

Beide Young Scientists liegen mit ihren Anliegen und den Zielen ihrer Forschung übrigens durchaus im Trend. In einer nicht repräsentativen Umfrage gab eine Mehrheit der an der 65. Lindauer Nobelpreisträgertagung teilnehmenden Young Scientists an, das vordringlichste Problem, das die Wissenschaftscommunity angehen sollte, wären Klimawandel und Umweltschutz, gefolgt von Frieden, Energieversorgung und Armutsbekämpfung. Auch wenn es von Haus aus schwierig ist, diese Themen sinnvoll voneinander abzugrenzen, wird der Schwerpunkt deutlich.


Mallory Ladd, Foto: privat

Mallory Ladd, Foto: privat

Mallory Ladd (27), Chemikerin aus den USA, arbeitet am Oak Ridge National Laboratory, University of Tennessee, und erklärt, dass die Arktis ein dramatisches Beispiel für die Folgen der Erderwärmung ist – hier ist die Erwärmungsrate zweimal so hoch wie im globalen Mittel. Ihre Doktorarbeit befasst sich mit der Veränderung des quantitativen und qualitativen Anteils von Stickstoff im arktischen Alaska. “Mein Ziel ist, ein genaues und gleichzeitig wenig fehleranfälliges Verfahren der Massenspektrometrie zu entwickeln, mit dem man die leichtgewichtigen Bodenbestandteile bestimmen kann, meist Stickstoffverbindungen wie Aminosäuren, Aminozucker und so weiter, und ihre Varianz über verschiedene Klimazonen hinweg beschreiben kann.“ Mallory Ladd möchte sich gerne mit Dr. Steven Chu über seine Zeit als U.S. Secretary of Energy und seine Gedanken über erneuerbare Energien unterhalten. Sie selbst sagt über den Klimawandel:

“Wir können es uns nicht mehr leisten so zu tun, als würde der Klimawandel uns alle nicht früher oder später ganz direkt und persönlich betreffen, und zwar in praktisch jedem Lebensbereich. Deshalb sollte die Wissenschaft immer mit am Verhandlungstisch sitzen, wenn es um solche Themen geht, und man sollte ihr zuhören.“

Serge Alain Fobofou Tanemossu, Foto: Falling Walls Konferenz Berlin

Serge Alain Fobofou Tanemossu, Foto: Falling Walls Konferenz Berlin

Der Young Scientist Serge Alain Fobofou Tanemossu (28), Chemiker und gebürtig aus Kamerun, wird während der Lindauer Tagung als Podiumsgast an einer Master-Class von Kurt Wüthrich teilnehmen (NMR Spectroscopy and Magnetic Resonance Imaging – from Physics to Medical Diagnosis). Er arbeitet am Leibniz Institute of Plant Biochemistry, Halle (Saale) und forscht nach Stoffen in der Natur, die für die Herstellung von Medikamenten genutzt werden können: „In meiner Forschung suche ich nach pflanzlichen Wirkstoffen gegen HIV, Krebs, parasitäre Wurmerkrankungen und Alzheimer.” Fobofou Tanemossu freut sich aufs Netzwerken innerhalb der wissenschaftlichen Community in Lindau. Seiner Meinung nach sind die Erderwärmung und die an vielen Orten geführten Kriege die größten Probleme unserer Zeit.



“Es ist Aufgabe der Wissenschaftler, umweltfreundliche Lösungen für Themen wie Energiegewinnung und Ernährung zu finden.“

Und auch Serge Alain Fobofou Tanemossu hat eine politische Botschaft: „Die Politiker sollten sich darauf konzentrieren, dass unsere Umwelt erhalten bleibt und damit auch das Wohlergehen der Menschen.“

Papst Franziskus sagt, wir brauchen eine neue weltweite Solidarität, um unsere Probleme zu lösen. Young Scientist Noel Baker drückt es für die Wissenschaftlergemeinschaft so aus: „Wissenschaftler sollten sich als Vertreter der ganzen Menschheit sehen, nicht nur ihres Heimatlandes. Gemeinsam sollten wir dann versuchen, das Leben aller Menschen auf diesem Planeten zu verbessern.“


Steven Chu bei der 64. Lindauer Nobelpreisträgertagung, Foto: Ch. Flemming/Lindau Nobel Laureate Meeting

Steven Chu bei der 64. Lindauer Nobelpreisträgertagung, Foto: Ch. Flemming/Lindau Nobel Laureate Meeting

Lecture Steven Chus bei der kommenden 65. Lindauer Nobelpreisträgertagung: „A Random Walk in Science“; Science Breakfast mit Steven Chu und anderen: „Feeding the 9.6 billion“ unter Moderation von Adam Smith, Chief Scientific Officer bei Nobel Media AB, Sweden.

Slider-Foto: Asian Development Bank (CC BY-NC-ND 2.0)

Fuelling controversy (Biofuels – Chu & Michel)

We are facing a global energy crisis, and scientists are charged with finding alternatives to fossil fuels. In this film, Nobel laureates Steven Chu and Hartmut Michel visit a farm with three young researchers to consider our energy future. They ask whether biofuels can power the planet and, if not, what are the alternatives? The researchers are full of optimism but Chu former US Secretary of Energy brings them back down to earth with the harsh reality of economics, while Michel envisions a future powered by clean electricity.