#LiNo17 Daily Recap – Friday, 30 June

The 67th Lindau Nobel Laureate Meeting ended with the Baden-Württemberg Boat Trip to Mainau Island. It was a day full of science, discussions, joy, genuine delight and even some tears. Enjoy the highlights of the last day of #LiNo17.

 

Video of the day:

 

“I felt like I had the world in my hands.” – Young scientist Hlamulo Makelane

A definite highlight of the day were the heartfelt closing remarks made in the courtyard of Mainau Castle. You can watch the entire Farewell in our Mediatheque.

Hlamulo

Browse through our mediatheque to find all lectures, discussions and more educational videos from the Lindau Meetings.

 

Picture of the day:

Nobel Laureate Rudolph A. Marcus enjoying the Baden-Württemberg Boat Trip to Mainau Island whilst conversing with young scientists. 

67th Lindau Nobel Laureate Meeting Chemistry, 25.06.2017 - 30.06.2017, Lindau, Germany, Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings Boattrip to Mainau Island

For even more pictures from the Lindau Nobel Laureate Meetings, past and present, take a look at our Flickr account.

 

Blog of the day:

For Nobel Laureate Jean-Pierre Sauvage, novelty, teamwork and adventure drove advances in synthesising molecular chains and knots. Read about his work and his advice for the young scientists.

Sauvage

Do take a look at more of our inspring blog posts.

 

Tweets of the day:

 

Last but not least, follow us on Twitter @lindaunobel and Instagram @lindaunobel and keep an eye out for #LiNo17

This is the last daily recap of the 67th Lindau Nobel Laureate Meeting. The idea behind it was to bring to you the day’s highlights in a blink of an eye. We hope you enjoyed the meeting and wish you all safe travels home.

#LiNo17 Daily Recap – Thursday, 29 June

Thursday was the last day in Lindau but not the last day of the meeting. Friday is going to take the participants to Mainau Island, so while they are enjoying their last day on the picturesque island, let’s take a look at what happened yesterday. Here are our highlights from Thursday:

 

Video of the day:

All six panelists – Nobel Laureates Sir John E. Walker and Dan Shechtman, Wiltrud Treffenfeldt (Chief Technology Officer of Dow Europe GmbH), May Shana’a (Head of Research & Developmen of Beiersdorf AG) and young scientist Thomas L. Gianetti from ETH Zurich as well as chairwoman Alaina G. Levine – have strong opinions on “Science Careers” and gave excellent advise for #LiNo17 participants.

You are welcome to browse through our mediatheque for more panel discussions, lectures and other informative videos.

 

Picture of the day:

Nobel Laureate Peter Agre’s lecture on “Aquaporin Water Channels” was not only educational, but also made the young scientists laugh. Most definitely one of the best pictures of Thursday.

67th Lindau Nobel Laureate Meeting Chemistry, 25.06.2017 - 30.06.2017, Lindau, Germany, Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings Audience in Peter Agre's lecture

For even more pictures from the Lindau Nobel Laureate Meetings, past and present, take a look at our Flickr account.

 

Blog of the day:

When Nobel Laureates come to Lindau, photographer Volker Steger presents each with a surprise task. Find out what it is and how the laureates “sketch their science”.

Sketches of Science Slider

Do take a look at more of our inspring blog posts.

 

Tweets of the day:

 

Last but not least, follow us on Twitter @lindaunobel and Instagram @lindaunobel and keep an eye out for #LiNo17

We will keep you updated on the 67th Lindau Nobel Laureate Meeting with our daily recaps. The idea behind it is to bring to you the day’s highlights in a blink of an eye. The daily recaps will feature blog posts, photos and videos from the mediatheque.

 

Julie Fenton Loves a Challenge, Regardless of Scale

Interview with #LiNo17 young scientist Julie L. Fenton

This interview is part of a series of interviews of the “Women in Research” blog that features young female scientists participating in the 67th Lindau Nobel Laureate Meeting, to increase the visibility of women in research (more information for and about women in science by “Women in Research” on Facebook and Twitter). Enjoy the interview with Julie and get inspired.

 

Julie_1

Julie L. Fenton, 25, from the United States of America is a Graduate Student & PhD Candidate in Chemistry at the Pennsylvania State University, US. She is working in inorganic/materials chemistry. Nanomaterials have garnered intense interest in the scientific community, due in part to their unique shape-, size-, and composition-dependent properties, and emerging technological applications that leverage these properties require nanomaterials with very specific architectures and well-defined characteristics. Colloidal synthetic methods are among the most effective for delivering high-quality inorganic nanomaterials with desirable properties in high yield. However, the complexities of solution-based chemistry limit the ability to predict and rationally target desired products, rendering some materials and morphologies of interest inaccessible. Her work has focused on developing new synthetic and post-synthetic modification strategies in order to produce inorganic nanomaterials with precise control over product morphology, elemental composition, and crystal structure in a variety of material systems. These advances allow them to access metastable materials, morphologic features, and/or complex heterostructures with desired physical and chemical properties, many of which are not amenable to previous synthetic methods.

 

What inspired you to pursue a career in science/chemistry?

I have always had an interest in problem solving and puzzles – I love a challenge, regardless of scale. When I came up against my first chemistry class in high school, thinking about the world on a molecular level intrigued me, and I was hooked. To me, the chemical discipline represented solving some of the most complex and intriguing problems in the world, except that the answer was previously unknown. This was exciting to me as a young person, and the passion only deepened through higher-level study of chemistry through college, and now well into graduate school.

 

Who are your role models?

I have been fortunate enough to benefit from a number of fantastic mentors and role models, scientific and otherwise, throughout my life. My first (and best) role models have been my parents. Through a strong work ethic coupled with the highest value placed on integrity and respect for others, they have demonstrated to me what success in life looks like (which is not specifically linked to career success). Though my parents, who are not scientists, don’t always understand exactly what it is that I’m doing on a day-to-day basis, they are supportive at every step, encouraging me to be the best version of myself in scientific pursuits, but reminding me that the world is larger than just science, and that it’s important to stay grounded in my personal values.

Academically, I am grateful to have benefitted from and been inspired by too many people to name in this discussion, so I will name just two: my current graduate research advisor, Dr. Raymond Schaak, and my first research advisor as an undergraduate, Dr. Richard Schaeffer. These two have been phenomenally encouraging to me, helping me to develop and to think creatively as a scientist, while giving me the space to work independently on projects that I have cared about. Beyond that, they have modelled how one can balance the demands of a career in chemistry with other priorities in life. Conversations with these two have helped me to think broadly about the world and my place in it, going far beyond the expectations I could have asked for from an academic advisor.

 

How did you get to where you are in your career path?

I grew up in rural Lancaster County, Pennsylvania, USA and did my undergraduate work in chemistry at Messiah College, a small school (~2800 undergraduates only) in Grantham, Pennsylvania, USA. During my second semester as an undergraduate, I began to do research for the first time… I was enthralled by the challenge of research on the cutting edge of science. Research gave me an opportunity to think creatively about the world and the ways in which it works, and my advisor (Richard Schaeffer) gave me ample space to explore and problem-solve independently.

I anticipate working toward developing mentoring programmes to help foster students’ interest in STEM fields at an early age

Like many aspiring U.S. scientists, I participated in a National Science Foundation Research Experience for Undergraduates (NSF REU), between my third and fourth years of college. As a student coming from a small undergraduate institution, this was my first opportunity to do research full-time, working alongside graduate students and primarily research-active faculty members. As such, this experience was amongst the most formative of my young life as a chemist, igniting a passion for academic research and scientific problem solving on the highest level that will never be quenched. Unlike most undergraduate researchers, however, my REU was conducted at the Université de Strasbourg in Strasbourg, France, affording me the unique opportunity to live and to conduct research outside of the United States, where I have lived, worked, and learned for my entire life. Even though significant language and cultural barriers existed between the French research group and myself, we forged relationships and collaborations through the common language of chemistry. This is where I first understood and appreciated the international impact that work in science can have: increasingly, we are participating in an endeavour that transcends our national and cultural boundaries, aided by the ease of communication and collaboration. It was (and still is) incredibly exciting to me to contribute, in some small way, to something much greater than myself.

These experiences propelled me into graduate school, beginning in the summer of 2014, where I have been ever since, and will continue to motivate me as I move into the next stages of my career. I’m currently working towards my Ph.D. in materials/inorganic chemistry at the Pennsylvania State University in University Park, Pennsylvania, USA under the direction of Ray Schaak.

 

What is the coolest project you have worked on and why?

I’m probably totally biased, but the coolest work that I have worked on is my current dissertation work. Although it’s really important to be able to control the way that atoms arrange themselves in solid-state materials (because the atomic arrangement, or crystal structure, dictates the properties), the typical high-temperature synthetic methods for making solid-state materials are often limited to obtaining only the most stable arrangements of atoms in a solid. By using a lower-temperature, solution-based cation exchange method, we can transform a performed material template into a material with targeted composition. Interestingly, these transformations can be accomplished with the retention of some qualities of the template material, including features of the original crystal structure, circumventing some of the primary difficulties encountered in traditional solid-state chemistry. Using this approach, we have been able to target and isolate some unusual crystal structures in a predictable fashion, which begins to point towards the ability to generalise these approaches for polymorphic structure targeting in solid-state chemistry.

I think the most exciting thing about chemistry (and science in general) is that the great breakthroughs can be serendipitous and unexpected

What’s a time you felt immense pride in yourself/your work?

In different ways, I have found pride in sharing my work with others. Outside of my lab or the community of solid-state chemists, there is something really exciting about communicating the major points of my science to non-technical audiences in a way that appeals to them (without oversimplifying the science behind it), in formal presentations and informal conversations. Additionally, I have found great satisfaction and pride in seeing some of my efforts come to fruition in published form. Getting to a paper is a grind – it represents many hours in lab and many, many failed experiments, significant data analysis and interpretation, as well as the actual time spent writing the manuscript and putting together figures and data in a way that communicates the significance more broadly. It is exhilarating to contribute to the scientific community, even in very small ways.

 

Julie_2

What is a “day in the life” of Julie like?

I’m a synthetic chemist, so the majority of my work-life time is spent in the hood or nearby in the lab, weighing powders, pipetting solvents, heating/degassing a reaction, injecting precursors or decomposition agents, or cleaning and working up reactions. I spend “down” time reading papers, chatting science with my lab mates or advisor, or getting other work done (at the beginning of my graduate career, this was class assignments or grading for my teaching assignments… lately, it’s writing!). If I’m not in the synthesis lab, you could probably find me in the Penn State Materials Characterization Lab using one of the transmission electron microscopes (TEM) to take a look at the morphology of my nanoparticle samples, to analyse their crystal structures (using selected-area electron diffraction or high-resolution TEM), or to assess their elemental composition using STEM-EDS (energy dispersive spectroscopy) mapping.

 

What are you seeking to accomplish in your career?

To merge my passion for chemistry and my desire to engage others in STEM, I plan to pursue an academic research career after completing my graduate work. As a young person, I had few female academic role models; as a professional, I anticipate working toward developing mentoring programmes to help foster students’ interest in STEM fields at an early age. I look forward to leveraging my career to help bridge the gap between technical and non-technical audiences and to increase scientific literacy at all levels of academia, politics and normal life. Thus far, I have observed and begun to appreciate the unique set of opportunities available to academic scientists: engagement with top-calibre colleagues, students and mentors, involvement with a built-in community of equally passionate researchers, opportunity to converse and collaborate across disciplines and institutions, and utilisation of cutting-edge instrumentation and laboratories. Leading scientists in top academic institutions enjoy the ideal setting for making discoveries, establishing meaningful collaborations and mentoring future generations of scientists. For an ambitious and creative scientist, academic research positions provide the latitude and flexibility to innovate, the environment to pursue individual research interests (sometimes several different ones), and the opportunity to truly impact the scientific world and the world at large.

 

What do you like to do when you’re not doing research?

I enjoy traveling to new places (or familiar ones), outdoor activities, reading, board games, and spending time with family and friends. I also make some attempts to cook, though I have found that synthetic skills in chemistry do not directly translate to cooking skills (although it feels like they should).

 

What advice do you have for other women interested in science/chemistry?

Although we live in a world of instant gratification and quick answers, progress in science is often quite slow. It requires a significant investment of time, energy and thought, and even with this discipline, projects stalling or hypotheses failing is inevitable in these disciplines. This can be discouraging to anyone, but particularly to young scientists. Eventually, progress is made: an interesting discovery, fresh eyes to interpret formerly frustrating results, or new ideas and hypotheses that can be tested and proven true, but this takes time. My advice is to keep pushing towards the goal of understanding, and to stay positive — try not to let temporary frustrations get in the way of that. I would encourage young women in particular to not be intimidated by male-dominated academic science. If you want it and are willing to work hard, you are capable of achieving every success in science.

 

In your opinion, what will be the next great breakthrough in science/chemistry?

I think the most exciting thing about chemistry (and science in general) is that the great breakthroughs can be serendipitous and unexpected – although we would like to know exactly where they will come from, we don’t and we shouldn’t expect to. As a materials chemist, however, I think some of the scientific discoveries with the potential for the greatest impact on society will come from the development of new materials. I expect that the next decade and beyond will give us numerous breakthroughs in materials for a wide variety of applications, particularly those important for solar energy harvesting, fuel cells, batteries, other electronics and beyond (perhaps for applications we haven’t even thought of yet).

We should continue to reach out to and encourage aspiring scientists as children and teens, and at the undergraduate level

What should be done to increase the number of female scientists and female professors?

This is a difficult question, and one that I think (rightly) is starting to be addressed at every level of academic training and careers. I think that we, as a community, are taking steps in the right direction towards an academy that looks more representative of broader society (including more women and other under-represented groups). While progress is good, this process will take time! 30, 40 and 50 years ago, the pool of trainees looked much different than it does today, which is still reflected in the way the academy (or even in high levels of scientific industry) looks today. I think it’s important not to do this artificially at the highest levels of science, but to build up to that slowly, over a period of time. We should continue to reach out to and encourage aspiring scientists as children and teens, and at the undergraduate level, and help to change the perception of what a scientist looks like and does. At the graduate level, mentorship is extremely important, as learning from the mistakes and triumphs of others who have gone before you is valuable for making informed decisions about your career (and basically everything else).

#LiNo17 Daily Recap – Wednesday, 28 June

With Wednesday ending, we are striding towards the last two days of the 67th Lindau Nobel Laureate Meeting – but that does most certainly not mean that the next days are getting less exciting than the previous ones. Talking about exciting days, let’s take a look at the highlights of yesterday.

 

Video of the day:

Yesterday, Nobel Laureates Stefan Hell and Richard R. Schrock discussed “Current and Future Game Changers in Chemistry” with Jörg Huslage from the Corporate Research & Development Department of Volkswagen Group and Siddulu Talapaneni, an Indian Young Scientist from the University of South Australia at the Panel Discussion moderated by Geoffrey Carr, Science Editor from The Economist.

Obviously, this is not the only video from the last days and today! You are more than welcome to browse through our mediatheque for more.

 

Picture of the day:

Nobel Laureate Ferid Murad enjoying his coffee break while talking to some of the young scientists.

67th Lindau Nobel Laureate Meeting Chemistry, 25.06.2017 - 30.06.2017, Lindau, Germany, Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings Ferid Murad in talk with young researchers

For even more pictures from the Lindau Nobel Laureate Meetings, past and present, take a look at our Flickr account.

 

Blog of the day:

Focus on Africa: Advancing Science to Advance Humankind – Alaina G. Levine talks with a rising star of Kenyan science, Titus Masese, on the present, presence, and presents of African Science across the globe.

Focus on Africa Slider

Do take a look at more of our inspring blog posts.

 

Tweets of the day:

 

 

Last but not least, follow us on Twitter @lindaunobel and Instagram @lindaunobel and keep an eye out for #LiNo17

Over the course of the next three days, we will keep you updated on the 67th Lindau Nobel Laureate Meeting with our daily recaps. The idea behind it is to bring to you the day’s highlights in a blink of an eye. The daily recaps will feature blog posts, photos and videos from the mediatheque.

Chemists Respond to Climate Change with Sustainable Fuel and Chemical Production

Climate change is a common lecture topic at the Lindau Nobel Laureate Meetings. At the opening of the 67th Lindau Meeting, William E. Moerner presented the keynote speech prepared by Steven Chu, 1997 Nobel Laureate in physics and former U.S. Secretary of Energy. In his speech, Chu described how clean energy technologies provide an insurance policy against the societal risks of climate change.

At previous meetings, Nobel Laureates Mario Molina, Paul J. Crutzen, and F. Sherwood Rowland have detailed how greenhouse gases produced by burning fossil fuels alter atmospheric chemistry and warms the planet. Reducing greenhouse gases, particularly carbon dioxide emissions, is key to stopping the planet’s warming temperature. But instead of viewing carbon dioxide as a problem, what happens if it is also part of a solution to climate change?

 

Science Breakfast Austria during the 67th Lindau Nobel Laureate Meeting, Photo/Credit: Julia Nimke/Lindau Nobel Laureate Meeting

Science Breakfast Austria during the 67th Lindau Nobel Laureate Meeting, Credit: Julia Nimke/Lindau Nobel Laureate Meeting

 

Research discussed by Nobel Laureates and young scientists at the 67th Lindau Meeting included ways to use carbon dioxide as a renewable source of synthetic fuel and useful chemicals. Currently, fuels and chemicals come from refined and processed oil and natural gas. Producing these compounds from carbon dioxide captured from the atmosphere or factory emissions could be environmentally sustainable because carbon dioxide released during production or consumption is recycled to make new fuel or material. Sustainable and renewable feedstocks are one aspect of green chemistry, a key topic at this year’s meeting.

During a science breakfast hosted by the Austrian Federal Ministry of Science, Research, and Economy on Tuesday morning, Bernard L. Feringa, 2016 Nobel Laureate in Chemistry, outlined three challenges for carbon capture and utilisation: separating carbon dioxide from other gases, efficiently concentrating it, and catalytically converting the inert molecule to useful fuel and chemicals.

In addition to his Nobel-winning work on molecular machines, Feringa also studies catalysis. While working at Shell in the early 1980s, he developed lithium catalysts to reduce carbon dioxide. The project ended after a couple of years, however, when the researchers realised they would need all the lithium in the world just to make a reasonable amount of fuel.

 

and Melissae Fellet during a Poster Session at the 67th Lindau Nobel Laureate Meeting, Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings

Biswajit Mondal and Melissae Fellet during the Poster Session at the 67th Lindau Meeting, Credit: Christian Flemming/Lindau Nobel Laureate Meetings

Since then, researchers around the world have developed various electrochemical and photothermal catalysts that reduce carbon dioxide into compounds such as carbon monoxide, formic acid, ethylene and methane. Several young scienists attending the meeting are studying these catalysts, and two presented their work during the poster session.

Biswajit Mondal, at the Indian Association for the Cultivation of Science, studies the mechanism of iron-porphyrin electrocatalysts for carbon dioxide reduction. With an understanding of the precise molecular changes during every step of the reduction reaction, researchers can then tailor the catalyst structure to enhance the reaction efficiency.

Dayne F. Swearer, at Rice University, combines two reactive functions in one aluminum nanoparticle to unlock new catalytic mechanisms for known reactions. In his nanoparticles, the aluminium core absorbs light and generates an energy carrier called a plasmon, which can alter and enhance the activity of a metal catalyst on the outside of the nanoparticle. For example, a particle with a shell of copper oxide its aluminium core reduces carbon dioxide to carbon monoxide faster and more efficiently than particles made of either material alone.

Back at the science breakfast, Feringa encouraged young scientists to investigate photoredox catalysts that reduce carbon dioxide using absorbed light energy. These catalysts can create a variety of reactive intermediates, including radical anions and cations, which could be used to add carbon dioxide to hydrocarbons. Such reactions provide renewable ways to make building blocks for plastics and other common polymers.

 

Young scientist Anna Eibel during the Science Breakfast, Credit: Julia Nimke/Lindau Nobel Laureate Meetings

Young scientist Anna Eibel during the Science Breakfast, Credit: Julia Nimke/Lindau Nobel Laureate Meetings

Renewable routes to acrylic acid, the building block of acrylate polymers common in dental work, are interesting to Anna Eibel, a young scientist at the Graz University of Technology in Austria and a speaker at the science breakfast. She develops new molecules to induce acrylate polymerisation with light at longer wavelengths than the ultraviolet used now.

To really address carbon dioxide emissions, however, renewable routes to synthetic fuels such as methane and methanol are needed. In 1998, George Olah, the 1994 Nobel Laureate in Chemistry, talked about synthetic methanol production from carbon dioxide at the 48th Lindau Meeting, and the topic reappeared at the science breakfast this year.

Chemists are in a unique position to advance renewable fuels and chemicals, Feringa said. The main research questions in this area involve problems of catalysis, electrochemistry, photochemistry, material synthesis and chemical conversions. Feringa encouraged the young scientists to take opportunities to tackle these questions. “Of course you may contribute only a small step, but of course we have to do it. It is our duty to society […] to open opportunities for the future.”

#LiNo17 Daily Recap – Tuesday, 27 June 2017

We are already three days into this year’s chemistry meeting and there are so many interesting things happening. We have collected a huge amount of exhilarating pictures, exceptional lectures and thought-provoking blog contributions. So you can guess that there is so much more that you should definitly check out on our mediatheque than we present to you in our daily recap . Enjoy the following highlights!

 

Video of the day:

“This meeting is about mentorship, and it’s about the future, it’s not about the Nobel Laureates, it is [in fact] about mentoring the next generation of scientists – OUR BEST HOPE FOR THE FUTURE” – Brian Malow has provided us with a live video featuring seven young scientists.

 

 

Picture of the day:

After having the Poster Flashes on Monday, our Poster Session proved to be a success. Frank Biedermann, a young scientist explaining his research about “Supramolecular Sensing Ensembles” to Nobel Laureate Erwin Neher.

67th Lindau Nobel Laureate Meeting Chemistry, 25.06.2017 - 30.06.2017, Lindau, Germany, Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings Poster Session

 

For even more pictures from the Lindau Nobel Laureate Meetings, past and present, take a look at our Flickr account.

 

Blog of the day:

“When scientific issues become publicly controversial, Nobel Laureates have a history of making strong statements at the Lindau Nobel Laureate Meetings,” writes Melissae Fellet in her new article on science in a post-truth era. Politics and the question of what scientists can do to rebuild trust is one of the main topics being discussed by the participants of the 67th Lindau Meeting.

Post-truth_Slider

Press Talk on ‘Science in a Post-Truth Era’ hosted by Deutsche Welle during the 67th Lindau Meeting. Photo/Credit: Julia Nimke/Lindau Nobel Laureate Meetings

Do take a look at more of our exciting blog posts.

 

Tweets of the day:

 

Last but not least, follow us on Twitter @lindaunobel and Instagram @lindaunobel and keep an eye out for #LiNo17

 

Over the course of the next four days, we will keep you updated on the 67th Lindau Nobel Laureate Meeting with our daily recaps. The idea behind it is to bring to you the day’s highlights in a blink of an eye. The daily recaps will feature blog posts, photos and videos from the mediatheque.

#LiNo17 Daily Recap – Sunday, 25 June 2017

“I close my remarks by asking the young students gather this week at the Lindau Nobel Laureate Meeting to consider joining the effort to combat climate change.” – Steven Chu

Yesterday, the 67th Lindau Nobel Laureate Meeting started in grand fashion with the festive opening ceremony featuring the warm and heartfelt welcome address by Countess Bettina Bernadotte and a very poignant and moving keynote by Steven Chu. The Nobel Laureate himself was, unfortunately, unable to attend, but his fellow laureate William E. Moerner luckily stepped in to deliver the powerful speech on “Science as an Insurance Policy to the Risks of Climate Change”.

 

Video of the day:

“A changing climate does not respect national boundaries.”
First highlight is Steven Chu’s keynote, read by William Moerner. Chu addressed the highly topical issue of climate change and reminded all of us how important it is to treat the earth well.

Obviously, this is not the only video from yesterday and today! You are more than welcome to browse through our mediatheque for more.

 

Picture of the day:

Standing Ovations
William Moerner’s presentation of Steven Chu’s keynote was one of the most moving moments.

67th Lindau Nobel Laureate Meeting, 25.06.2017, Lindau, Germany

67th Lindau Nobel Laureate Meeting, 25.06.2017, Lindau, Germany

For even more pictures from the Lindau Nobel Laureate Meetings, past and present, take a look at our Flickr account.

 

Blog post of the day:

“A Stellar Meeting Where the Stars Shine Bright, the Science Is Chill, and the Networking Is Chem-Tastic.”
Another highlight is the blog post from science writer Alaina G. Levine. She is back in Lindau for #LiNo17 and gives a preview of the panel discussion on science careers that she will chair on Thursday (replacing Karan Khemka).

Do take a look at more exciting blog posts.

 

Tweets of the day:

 

 

Last but not least, follow us on Twitter @lindaunobel and Instagram @lindaunobel and keep an eye out for #LiNo17

 

Over the course of the next six days, we will keep you updated on the 67th Lindau Nobel Laureate Meeting with our daily recaps. The idea behind it is to bring to you the day’s highlights in a blink of an eye. The daily recaps will feature blog posts, photos and videos from the mediatheque.

Ben Feringa: Molecular Machines of the Future

Ben Feringa giving the first lecture at the 67th Lindau Nobel Laureate Meeting. Photo/Credit: Jula Nimke/Lindau Nobel Laureate Meetings

Nobel Laureate Ben Feringa giving the first lecture at the 67th Lindau Nobel Laureate Meeting. Photo/Credit: Julia Nimke/Lindau Nobel Laureate Meetings

The Nobel Laureate gave the #LiNo17 opening lecture with the title ‘The Joy of Discovery’. Ben Feringa grew up on a farm near Groningen, the second of ten siblings. Today, he is professor in Groningen and also received his MSc and PhD degrees there. And just as much as he enjoyed nature as a child, he now enjoys the inifinite possibilities of molecules. In his own words: “We enjoy the adventure into the unkown.” Before starting his lecture, he has some advice in store for the young scientists at the Lindau Nobel Laureate Meeting: Always look for a challenge, and find teachers who challenge you, persevere, follow your intuition and your dreams – but ‘walk on two feet’, meaning remain realistic, and find a balance between life and research. Looking at his impressive career, and appreciating his obvious delight in his work, it seems that Feringa took his own advice to heart.

It’s truly mind-blowing to see what Ben Feringa and his research group are capable of: they synthesise molecules from inanimate matter that can move autonomously. One striking example are the small ‘spiders’ that you can see crawling around under a microscope. These ‘spiders’ can self-assemble, meaning that several molecules form clusters, and these clusters move completely autonomously as long as ‘fuel’ is provided, in their case sugar. (You can watch the crawling ‘spiders’ in a solution, also called nano-swimmers, on the website of Feringa’s research group, or at the end of his #LiNo17 lecture). Other molecules at Feringa’s Molecular Nanoscience group at the University of Groningen have been fitted with light-sensitive switches, so light of a certain wavelength turns them on and off and also acts as their ‘fuel’.

As Feringa points out himself in his lecture: chemists are great at creating molecules, but it’s extremely difficult to control their dynamic functions – movement, rotation, switches, responses, etc. His most noted invention is his version of the ‘nanocar’ – it was also strongly featured in the 2016 Nobel Prize media coverage. For a nanocar’s engine, you need unidirectional rotation. Feringa and his research group discovered the first man-made molecular rotor that could perform a 360 degree rotation ‘a bit by accident’ in the 1990s. They had been working on an alkene molecule (alkenes are unsaturated hydrocarbons containing at least one carbon-carbon double bond). This specific alkene could perform a quarter turn in a process called isomerisation: a process in which one molecule is transformed into another with exactly the same atoms, only these atoms are now arranged differently. Suddenly the researchers realised that the molecule had in fact performed a 180 degree turn and hadn’t switched back. Then they wondered: “Maybe we can get it to perform a 360 degree turn.”

 

How the molecular rotor works: double-bond isomerisation and thermal helix inversion (heat) alternate. Image: Ben Feringa group. Source: The Swedish Academy of Sciences

How the molecular rotor works: double-bond isomerisation and thermal helix inversion (heat) alternate. Image: Ben Feringa group. Source: The Royal Swedish Academy of Sciences

 

Finally, the researchers managed a full rotation with two double-bond isomerisations and two helix inversions induced by heat (see graph above). On the one hand, ‘unidirectional rotation marks the most fundamental breakthrough‘ in the search for molecular motors; on the other hand, the molecule was still too slow – it needed about one hour for the 360 degree turn. Now the researchers set out to build much faster molecules. About sixty different motor designs later, they reached an astounding speed of 10 million rotations per second. But in reality there are some restrictions: for instance, you often cannot get enough energy into these nanosystems to perform at top speed, and the surfaces on which the motors are supposed to perform limit their speed. So realistically, these tiny motors now rotate at about 4000 cycles per second. Next, the researchers fitted four of the enhanced molecules on to axles and added a stator: a molecular four-wheel drive was put on the ‘road’, usually a metal surface.

Today, several research groups around the world build nanocars. And although Feringa’s team received much recognition for their own nanocar, they’re exploring many other possible applications of molecular machines, for instance in medicine: imagine smart drugs that can be ‘switched on’ only at their target area, for instance a tumour. These would be high-precision drugs with very few or even no side-effects, because other body cells would not be affected. In his Lindau lecture, as well as in his Nobel lecture in Stockholm in December 2016, Feringa gave two prominent examples: photo-controlled antibiotics and photo-controlled chemotherapeutics. Into one drug from each category, the Feringa group inserted a light-switch, meaning that the drugs only start working if they’re activated by a certain wavelength of light. The researchers are now working with near-infrared light that has a deep penetration depth, meaning it can even reach remote places deep inside the human body.

 

Nanocar JPG (797x451)

 

With photo-controlled antibiotics, the goal is to ‘train’ the molecules to find their target structures autonomously. Next, their activity would be switched on with an infrared light. Now the drugs would work against a bacterial infection at the target point – no other body cells or bacteria would be affected, making antibiotic restistance more unlikely. And even if the drug leaves the body after treatment, contamination of ground or drinking water would be prevented by precisely engineered half-times of the molecules: they would simply stop being active after a certain amount of time, rendering the build-up of antibiotic restistance outside the human body unlikely as well.

The same holds true for chemotherapeutics: only after a photo-controlled chemotherapeutic reached a tumour, its activity would be switched on, meaning all other body cells would be spared the often severe side-effects. In his Nobel lecture, Feringa describes his dream for future cancer treatments: new imaging technologies like MRI would be linked to a specific laser. First, the patient receives an injection of a photo-controlled chemotherapeutic. Next, the MRI technology would detect a tiny tumour. Now the MRI feeds this information automaticaly to a laser that is callibrated to a specific wavelength that activates the drug. The result is “high temporal and local precision”.

Those are only two examples of the ‘endless opportunities’ of molecular machines, in Feringa’s words – and applications are not limited to pharmaceuticals. Feringa himself talks about self-healing car coatings or wall paint, also called ‘smart coatings’. With a growing world population and a scarcity of materials, smart coatings could help to form longterm coatings, help to spare natural resources, or they could integrate information technology like sensors into the coatings. Other experts envision self-healing infrastructure, for instance plastic water pipes that are able to repair their own leaks. Fraser Stoddart, Feringa’s American-Scottish co-recipient of the 2016 Noble Prize, went into yet another research direction and now builds highly efficient data storage devices based on molecular machines.

 

Ben Feringa giving the first lecture at the 67th Lindau Nobel Laureate Meeting. Picture/Credit: Julia Nimke/Lindau Nobel Laureate Meetings

Ben Feringa during his lecture at the 67th Lindau Nobel Laureate Meeting. Picture/Credit: Julia Nimke/Lindau Nobel Laureate Meetings

 

In October 2016, the Royal Swedish Academy of Sciences announced “the dawn of a new industrial revolution of the twenty-first century” based on molecular machines. Feringa himself often emphasises that he is conducting basic research, and he likes to point out that inventions like electric machines, airplanes or smartphones where all the results of basic research – and that they often needed several years or decades to find widespread application. He estimates that in maybe fifty years, doctors will be able to use photo-controlled drugs as described in his Nobel lecture.

 

Melania Zauri Wants to Pass On Her Enthusiasm for Science

Interview with #LiNo17 young scientist Melania Zauri

This interview is part of a series of interviews of the “Women in Research” blog that features young female scientists participating in the 67th Lindau Nobel Laureate Meeting, to increase the visibility of women in research (more information for and about women in science by “Women in Research” on Facebook and Twitter). Enjoy the interview with Melania and get inspired.

 

 

Photo/Credit: Courtesy of Melania Zauri

Photo: Courtesy of Melania Zauri

Melania Zauri, 31, from Italy is an EMBO Postdoc at the Center for Molecular Medicine of the Austrian Academy of Sciences. Her research interest lies in metabolic alterations that arise in cancer. A particular focus of her research in the recent years has been towards nucleotide metabolism and cancer. With her research, she is trying to understand if this pathway can be challenged to provide an avenue for cancer treatment.

 

What inspired you to pursue a career in science/chemistry?

I am extremely curious by nature and I have always been motivated to answer the many ‘Why this’ and ‘Why that’ questions which arose in my mind. Very early in my life, when I was teenager, I decided I wanted to have something to do with science. In secondary school I had an extremely good biology teacher who always motivated us to try to understand things and to observe the world surrounding us. She would even take us outside on little walks to explore nature. I think that my interest towards science and later biology was shaped by her influence. My family always let me explore and find my way to the answers I wanted; nothing came really obvious for me. That is what inspired me to pursue a career in research, which is essentially the way to find answers to the challenging questions of our times.

 

Who are your role models?

My role model number one is my mother. Without her energy, enthusiasm and support I would not be where I am now. She successfully managed to have a family and a working life and it will always represent for me the idea that if you want something you can achieve it. In general I am fascinated by people that achieved something by putting a lot of effort in what they have done. It is always very motivating for me to learn that success comes from real efforts and not only by any given luck.

 

How did you get to where you are in your career path?

I am from an Italian town in the mountains in the province of L’Aquila. It is since my university years that I left it and moved to study to the oldest university in the western world: Alma Mater Studiorum of Bologna. My dad came with me when I had to take the admission exam to get in the course in Biotechnologies. Luckily I passed it and I was admitted to this fantastic course. In Bologna I learned the fundamentals of a scientific career and a lot of life tips for a successful endeavor in the life sciences. It was there that I first entered in a laboratory and I enjoyed the successes and frustrations of a researcher. In Bologna the course had a really high reputation thanks to the modern setup established by the president of the course Prof. Masotti. Very brilliant teachers and scientists fueled my passion for molecular biology and biochemistry. I learned to ask questions and how to answer them.

I have always been motivated to answer the many ‘Why this’ and ‘Why that’ questions which arose in my mind.

In my practical development as a scientist, I would name, as of fundamental importance, Dr. Bruno Amati and his team at the European Institute of Oncology in Milan, where I worked on my MSc thesis on the role of Myc in stem cell biology, and Prof. Lingner and the EPFL in Lausanne, where I was admitted for a summer school working on telomeric RNA interacting proteins. Later on, I acquired my independence as a scientist under the supervision of Dr. Kriaucionis at the Ludwig Cancer Research within the Oxford University. My Oxford times were gorgeous scientifically and humanely. In there, I was the first PhD student of my supervisor and I could follow my curiosity driven research step by step trying to find the answer to problems as they appeared to me. It was luckily a successful journey that did not stop my motivation to continue with a scientific career. Oxford was a great time for me since I met a lot of role models and super smart people that I always enjoyed having a chat with. My project started from epigenetic and turned into nucleotide metabolism almost from the beginning. That is where my curiosity has been growing in the recent years and in my postdoctoral career too with a desire to broaden the horizon from single genes and enzymes research into a system biology one.

 

What is the coolest project you have worked on and why?

I would define one of my PhD project the coolest one. It started with the idea of affecting DNA methylation in the cells by administering to them epigenetically modified nucleosides. If this would work then we had a way of reversing a pathway that frequently goes wrong in cancer. However, very early I discovered that this was not the case and later on I found out that cells are not ready to recycle these modified forms of nucleosides. Indeed, they would convert into something damaging for the cell that would lead to their death. This process was only present in certain kind of cancer cells and therefore could be used to achieve cancer specificity. For me this revealed to be a very cool project, since it challenged evolution and I could test hands on how perfect the cellular machinery is in avoiding endangering itself with the incorporation of important epigenetic nucleotides. Indeed epigenetic DNA modifications are inherited through cellular replication and errors in their positioning might be lethal for the cells and the pathways that are related to them.

 

Melania_3

What’s a time you felt immense pride in yourself/your work?

I almost never feel pride in myself. There was one time though where I could not believe in reality. When my PhD supervisor got back the reviewers comments from the journal I was already back home in Italy for Christmas holidays. He sent them to me and I thought: Oh no, that is the end of my holidays…When I opened the email it said that he considered them extremely good and I could stay home and enjoy the rest of my holidays. This was when I realised that I could feel proud of my work.

 
 

Photo: Courtesy of Melania Zauri

 

What is a “day in the life” of Melania like?

My typical wet lab scientist day starts around 8 am at home where I check literature while having breakfast. Around 9 am I get to the laboratory and start my day typically in tissue culture or with experiments I think will take longer time. In my intervals or incubation times I check my emails and if long, I catch up on literature or I schedule meetings with coworkers. In my spare time, something I enjoy doing to share my enthusiasm, is science communication (at the moment I manage the Twitter account of my laboratory!). I usually get out of the laboratory around 6 pm to 7 pm and sometimes keep working on data analysis from home. I prefer to be quiet and relaxed and work from home if I have only computer work to accomplish. I need my cooking time and some friends/family time every day and this usually I manage to get it in the evenings.

 

What are you seeking to accomplish in your career?

In my career I would like to make an impact with my research for people suffering from cancer. This would be for me a life fulfilling achievement. In order to accomplish this, at some point of my career I would like to form a small team of scientists and start investigations into challenging areas of cancer research. I would also appreciate the possibility to do some teaching, as this would allow me to give back to the community what I got from my teachers: enthusiasm for science.

 

Melania_2

What do you like to do when you’re not doing research?

If I am not in the lab my curiosity is oriented towards music and cultural activities. In Vienna I had the opportunity to join the choir of St Augustin, one of the best in town. Additionally, I try to maintain a healthy lifestyle and therefore I enjoy cooking from scratch, sourcing good ingredients for my meals and doing a bit of sport to challenge my body. At the moment I am a bit into running as I would like to qualify to run the New York Marathon at some point in my life.

 

Photo: Courtesy of Melania Zauri

 

What advice do you have for other women interested in science/chemistry?

I would say persistence and a bit of self-confidence are good. I would also stress the fact that a good work-life balance and psychological state help in building confidence and in believing that one is the best supporter of oneself. I would say that in many difficult moments or when women are perceived as disadvantaged, it is best to keep strong and to demonstrate that we do not owe things to other people and we can equally compete with man.

 

In your opinion, what will be the next great breakthrough in science/chemistry?

In cancer research, the next breakthrough will be probably the clinical application of the protein degradation technology. Thanks to this technology any protein that can be specifically targeted by a molecule can be selectively degraded. It offers hope in the targeting of previously thought undruggable genes.

 as long as there is gender discrimination at school or within families, women will believe to be inferior to man

What should be done to increase the number of female scientists and female professors?

I think that this is a cultural problem of education and as long as there is gender discrimination at school or within families, women will believe to be inferior to man. I was lucky to grow up in a family that raised me and my brother very similarly on this aspect, as my mother was convinced that man and woman should be considered equals. In many contexts I see this was not the case for everybody. On the other side, I see that in Austria, for example, very limited experiments in a wet laboratory can be conducted as soon as you declare you are pregnant. This might be disadvantageous for women and there should be compensatory mechanisms in place to make sure that this time is not professionally wasted. Many of these things I believe should be discussed at EU level and unified across research locations in the EU.

“My best advice: don’t listen to advice.”

Ada Yonath is an Israeli chemist – an x-ray crystallographer – who spent 20 years studying the ribosome.  Her persistence paid off, in 2000, when, working with other researchers, she successfully mapped the structure of the ribosome, an achievement for which she shared the 2009 Nobel Prize in Chemistry with Venkatraman Ramakrishnan and Thomas A. Steitz.

The ribosome is a complex molecule, consisting of hundreds of thousands of atoms.  It’s actually a molecular machine (which is one of the key topics of this year’s chemistry-themed Lindau Meeting).

Residing in the cytoplasm outside the cell nucleus, the ribosome is a protein factory. It translates the coded message in DNA into individual amino acids and assembles them into proteins, which are involved in almost every function of living organisms.  

In mammals, there are millions of ribosomes in every cell!  Take a moment to absorb that.  Millions.  In each cell.  I have trouble wrapping my mind around that fact.  It indicates something about the scale of things.  As small as an individual cell is, it somehow contains – among other things(!) – millions of ribosomes, steadily producing proteins.  And, again, each ribosome is a complex network of hundreds of thousands of atoms.  Mapping its structure is essential to understanding how it functions.  And this understanding has provided great insight into the function – and design – of antibiotics, which can kill bacteria by interfering with protein synthesis.

I spoke with Ada at the 2016 Lindau Nobel Laureate Meeting – and she is returning this year for her seventh time – because “being able to contribute to young people is one of the miracles that happened to me after I got the Prize.” 

Watch the video below to hear Ada’s advice for young scientists and non-scientists alike.