Nobel Laureate Oliver Smithies passed away

The Lindau Nobel Laureate Meetings mourn the death of Nobel Laureate in Physiology or Medicine Oliver Smithies. He died on Tuesday, 10 January at the age of 91. Smithies was awarded the Nobel Prize in 2007 alongside Mario Cappecchi and Martin Evans “for their discoveries of principles for introducing specific gene modifications in mice by the use of embryonic stem cells”. Oliver Smithies was a prolific inventor and devised the method of using potato starch as medium for electrophoresis gel. During his four participations in Lindau Meetings he was especially beloved by the young scientists. For them, his lectures have always been an incredible source of inspiration regardless of their scientific discipline.

To learn more about the life of Oliver Smithies, visit his profile in the mediatheque. A virtual tour through his lab and workshop is available as part of the Nobel Labs 360° series.

 

Oliver Smithies at his discussion session in Lindau 2010. Photo: Ch. Flemming/Lindau Nobel Laureate Meetings

Oliver Smithies at his discussion session in Lindau 2010. Photo: Ch. Flemming/Lindau Nobel Laureate Meetings

 

Smithies with his wife Prof. Nobuyo Maeda at the

Smithies with his wife Prof. Nobuyo Maeda at the “Discoveries” exhibition on Mainau Island in 2010. Photo: Ch Flemming/Lindau Nobel Laureate Meetings

 

Sharing advice and inspiration with young scientists. Photo: Ch. Flemming/Lindau Nobel Laureate Meetings

Sharing advice and inspiration with young scientists. Photo: Ch. Flemming/Lindau Nobel Laureate Meetings

 

A dedicated hobby aviator, Oliver Smithies always kept looking for new horizons. Photo: R. Schultes/Lindau Nobel Laureate Meetings

A dedicated hobby pilot, Oliver Smithies always kept looking for new horizons. Photo: R. Schultes/Lindau Nobel Laureate Meetings

 

 

Obituary for Roman Herzog (1934 – 2017)

Roman Herzog was the first German President to visit a Lindau Meeting in 1995. “Since then we have known him as a loyal and also scrutinising companion. He has encouraged us to further develop the meetings boldly and purposefully,“ said Countess Bettina Bernadotte, President of the Council for the Lindau Nobel Laureate Meetings, when she presentend the Lennart Bernadotte Medal to Roman Herzog in 2010. The award ceremony was held at Jagsthausen Castle near Heilbronn, where Herzog lived with his wife Alexandra Freifrau von Berlichingen.

 

Roman Herzog (left) 2001 in Lindau alongside former CEO and chairman of NOvartis AG Daniel Vasella. Photo: Peter Badge/Lindau Nobel Laureate Meetings

Roman Herzog (left) 2001 in Lindau alongside former CEO and chairman of Novartis AG Daniel Vasella. Photo: Peter Badge/Lindau Nobel Laureate Meetings

Herzog knew and appreciated the Lindau Nobel Laureate Meetings from his time as minister for education and cultural affairs of the German federal state of Baden-Württemberg in the late 1970s. He shared Count Lennart Bernadotte’s vision and lifetime achievement. Starting in 1999, after his presidency, Herzog increased his active support for the meetings that invite many Nobel Laureates and hundreds of young scientists to Lake Constance each year, to exchange knowledge, ideas, and experience, to hear inspiring lectures and take part in lively discussions. But in the late 1990s, the need to reform the meetings became obvious: they required a more solid financial footing, and they also needed to become more visible in Germany and abroad, plus they were supposed to develop into a European flagship project for science promotion.

“The establishment of the Lindau Foundation, inspired by Roman Herzog, was the crucial milestone to give the Lindau dialogue a sustainable and longterm perspective,” Countess Bernadotte continued. On the one hand, he developed ideas and plans to render the Lindau Meetings more future-proof. On the other, he introduced distinguished professionals to the Council that soon would play a crucial role in reinventing the Lindau Meetings, namely Wolfgang Schürer and Thomas Ellerbeck. In 1999, Ellerbeck headed the personal office of Roman Herzog. As a member of the Council since 2000, and subsequently of the Foundation’s Board of Directors, one of his tasks was to heighten the profile of the meetings and explain them to a broader public.

Professor Wolfang Schürer served the meetings as Chairman of the Foundation’s Board of Directors from 2000 to 2015. After the foundation was established late in the year 2000, Roman Herzog became its Honorary President, as well as a member of its Honorary Senate. “His unique way to approach topics and to apply himself has always impressed me profoundly, be it as our Federal President or in his support for the Lindau Meetings,” Countess Bettina remembers. “Encountering this brilliant, modest and witty man in person was always very inspiring.”

 

Roman Herzog (right) with Nobel Laureate Zhores Alferov in Lindau in 2001. Photo: Zhores Alferov

Roman Herzog (right) with Nobel Laureate Zhores Alferov in Lindau in 2001. Photo: Peter Badge/Lindau Nobel Laureate Meetings

 

When people talk or write about Roman Herzog today, they never fail to mention his legendary speech in 1997, in which he said that the Germans needed a ‘jolt’ to leave their comfort zone, and that they had to say goodbye to some aspects of their beloved status quo: “We need more flexibility! In the 21st century knowledge society, we need lifelong learning and new skills. And we have to get used to the idea that we may pursue two, three or even four different careers in our lifetime.” Nowadays this topic still seems important, but by now many people have become used to career changes. But almost twenty years ago, this speech was considered ‘disruptive’ and much debated – and it’s still being quoted. Already in the mid-1990s, Herzog emphasised the importance of an inter-cultural dialogue between Western and Islamic countries. Inter-cultural dialogue is also one of the hallmarks of the Lindau Meetings where young and experienced scientists from different nations, cultures and religions interact.

Roman Herzog cared deeply about science, technical and economic innovation, as well as about educating the young. As a former German Federal President, and also as a former President of Germany’s Federal Constitutional Court, he had numerous assignments and functions in Germany and abroad, and he supported the Lindau Nobel Laureate Meetings actively. “The Nobel Laureates, all members of the Lindau committees, and the Bernadotte family are very grateful to him,” says Countess Bettina Bernadotte.

Roman Herzog died on 10 January 2017. In this time of mourning, we extend our deep sympathy to his wife and family.

Exploring the Connections Between Sports and Science with Kurt Wüthrich

When reading the biography of Nobel Laureate Kurt Wüthrich, it quickly becomes clear that he embodies the concept of a Renaissance man. Not only did he excel in academic work, winning the 2002 Nobel Prize in Chemistry for his advancement of nuclear magnetic resonance spectroscopy, but Wüthrich was also an avid sportsman.

As a young man attending the University of Basel, he worked towards degrees in both chemistry and sports — the latter requiring about 25 hours per week of intense physical exercise, as well as courses in human anatomy and physiology. Even though he chose science in the end, sports continued to play an important role in Wüthrich’s life. He enjoyed skiing, fishing, and even played in a competitive soccer league well beyond the age of 50.

Kurt Wüthrich speaking at #LiNo16

Kurt Wüthrich speaking at #LiNo16. Photo: Ch. Flemming/Lindau Nobel Laureate Meetings

Given his interdisciplinary background, it came as no surprise that much of his master class at the 66th Lindau Nobel Laureate Meeting focused on the science of sports. In fact, two young scientists who gave talks at the master class — Dominique Gisin and Bettina Heim — have been blessed with a similar combination of both mental and physical talents as Wüthrich himself.

Dominique Gisin, currently a Bachelor’s student in physics at ETH Zürich in Switzerland, spoke about the mechanics of alpine skiing and its impact on the human body. Gisin started her degree at the University of Basel but interrupted coursework to concentrate on skiing, making her Alpine Ski World Cup debut in 2005. Four years later, she got her first World Cup victory in women’s downhill skiing, and at the 2014 Sochi Winter Olympics, nabbed a gold medal in the same event.

To start off her talk, she played a series of video clips depicting the many crashes and falls she has suffered throughout her storied career, as the audience winced. In an average year, about 35% of all alpine athletes are injured — Gisin herself has gone through knee surgery a whopping nine times as a result of injuries.

In terms of physics, the variables that matter when it comes to modeling the dynamics of a downhill skier are numerous: the mass of the athlete, her velocity, the radius of a turn, snow temperature, air temperature, course condition, the mechanical characteristics of the equipment, visibility, and the mental/physical state of the athlete. These factors need to be considered when thinking about how to lower the rate of injury for the sport.

For instance, a tighter course setting would help reduce the athlete’s velocity, which could make crashes and falls less dangerous. But as Gisin notes, such a change would also cause skiers to move closer to the nets and potentially get tangled up in them. Another idea that might be interesting to pursue is uniform “anti-aerodynamic” racing suits that reduce athletes’ velocity and provide increased protection. Also, as seen in other sports, alpine skiing could benefit from the development of better protection equipment such as helmets and back protectors.

Kurt Wüthrich and Bettina Heim at the Rolex Science Breakfast

Kurt Wüthrich and Bettina Heim at the Rolex Science Breakfast. Photo: Ch. Flemming/Lindau Nobel Laureate Meetings

Also representing ETH Zürich at the master class was Bettina Heim, a Master’s candidate in physics with a background in competitive figure skating. Her achievements in the sport include competing at two World Junior Championships, two World Championships, and becoming Swiss national champion in 2011. Only a short time after, Heim decided to hang up her skates and study physics full-time.

Her Bachelor’s studies culminated in a paper published by the prestigious journal Science in 2015, titled “Quantum versus classical annealing of Ising spin glasses.” It shows that evidence of quantum speed-up may depend on how the problem is described, as well as how the optimization routine is implemented. Today, Heim continues her research in the field of quantum computing, mostly in the realm of adiabatic quantum computing and quantum error correction, at ETH Zürich’s Institute of Theoretical Physics.

However, her focus during Wüthrich’s master class remained firmly in the world of sport and not quantum computers — in particular, she discussed the physics behind her specialty of figure skating. For instance, an athlete must gain a lot of speed going into a spin, and then one side of the body has to stop so the other can pass. This translates velocity into rotation, which results in the many types of spin moves performed by figure skaters.

As in downhill skiing, injuries remain prevalent in figure skating despite not being a contact sport. Common injuries for skaters include stress fractures, acute injuries involving tendons or ligaments, and back injuries. Heim noted that back injuries often originate from jump impacts (which can be hard on the spinal discs) and extreme positions that require flexibility (tough on muscles and ligaments).

As Wüthrich’s fascinating master class reiterated, the connections between sports and science go way beyond the physics of motion. Sometimes, an athlete and a scientist can be found within the same person.

Nobel Prize in Physics 2016: “Weird and wonderful ideas”

The famous call from Stockholm reaches scientists in very different cirumstances: Some take the call that will change their life in the middle of the night, like Bruce Beutler; others miss the call because they’re in an airplane, like Hiroshi Amano. Michael Kosterlitz, however, took the famous call from Adam Smith, chief scientific officer of Nobel Media, in an underground carpark outside Helsinki. His first reaction was – silence. Listening to the recording of this phone call, everybody thinks that maybe the reception underground is as bad as Kosterlitz predicted. Then: “Jesus. That’s incredible…. that’s amazing!” Continue reading

Ten Astonishing Facts About Longevity

Constant rise in life expectancy after 1840: in early years, the most gains were achieved by reducing child mortality. In the mid-19th century, infectious diseases  were fought with vaccines, in the 20th century with antibiotics. Source: US National Institute on Aging, data from the Human Mortality Database

Constant rise in life expectancy after 1840: In early years, the most gains were achieved by reducing child mortality. In the mid-19th century, infectious diseases were fought with vaccines, and in the 20th century with the help of antibiotics. Source: US National Institute on Aging, data from the Human Mortality Database

In developed countries, life expectancy is still increasing linearly at a rate of about three months per year for women, and at a slightly lower rate for men. And also developing countries have witnessed considerable increases since the mid-20th century, albeit with setbacks like the HIV epidemic in Africa.
This trend has been evident since the mid-19th century – and it has sparked a longstanding scientific debate: Will this trend continue indefinitely into the future? Or is there a biological limit to human life? The latest contribution to this debate is a statistical study from the Albert Einstein College of Medicine in New York.

 

1. Most increases not in oldest age group

In this study, Jan Vijg, a Dutch-American geneticist, and his team analysed data from the Human Mortality Database that spans 38 countries and is run by American and German researchers. Since life expectancy increase is still strong, the researchers needed other theories and data if they are searching for indicators of a future slowdown. Their theory was: If there is no upper lifespan limit, the age group with the biggest increase in survival should get older continually. But contrary to this assumption, the largest increase in survival rates has plateaued around the age of 99 in 1980, and has only increased very slightly since. They interpred this plateau effect as an early sign of slowdown.

 

2. Supercentenarians rarely older than 115

To further test their theories, Dr. Vijg’s team also used data from the International Database on Longevity from the Max Planck Institute for Demographic Research in Rostock, Germany. Watch out! Now the ages of lucky individuals are analysed, whereas before, increases in age groups were studied. Jan Vijg’s team found that the maximum age reached by individuals plateaued at 115 years in the mid-1990s, with very few, yet famous, exceptions. The researchers see this as another sign of slowdown. “It seems highly likely we have reached our ceiling,” says Jan Vijg. “From now on, this is it. Humans will never get older than 115.”

 

3. Japan is different

Interestingly enough, the longevity database used by the Vijg team was assembled at the Max Planck Institute for Demographic Research, that is also one of the main contributers to the Human Mortality Database. But James Vaupel, founding director of this institute, doesn’t share Dr. Vijg’s interpretation. One of his objections is that in Japan, the age group enjoying the fastest growth is still getting older; this holds true for a few other developed countries as well. As James Vaupel wrote in an earlier paper, together with Jim Oeppen: Experts asserting that “life expectancy is approaching a ceiling … have repeatedly been proven wrong.”

 

Every third baby born in Britain today has a good chance of celebrating its 100th birthday, according to the Office for National Statistics ONS. Photo: iStock.com/David Freund

Every third baby born in Britain today has a good chance of celebrating its 100th birthday, according to the Office for National Statistics ONS. Photo: iStock.com/David Freund

4. Highest life expectancy, lowest birthrate

Japan has the highest life expectancy in the world and thus is of special interest to demographers: currently 86.8 years for women and 80.5 years for men. Japan also has one of the lowest birthrates. A web population clock from Tokyo University predicts that the last Japanese child will be born in the year 3,776 if this latter trend is not reversed – meaning that the Japanese will die out about one hundred years later. Some estimates suggest that by the year 2050, up to one million centenarians will live in Japan.

 

5. Can ageing be reversed?

In all other species, lifespans can be increased by genetic interventions, certain proteins or dietary changes. Several teams at James Vaupel’s institute in Rostock conduct research on these topics with different model animals, as well as many other research teams worldwide. So why should humans be an exception? “There is no time bomb that explodes at a certain age,” says Linda Partridge, director at the Max Planck Intitute for Biology of Ageing in Cologne, Germany, who is also specialising in strategies to influence ageing processes. In recent years, ageing in mice could be reversed with telomerase, and similar experiments were conducted successfully with human cells.

 

6. Animals that never age

There are some animals that don’t age. The biologist and mathematician Prof. Annette Baudisch for instance studied species like this, for instance robins and the freshwater polyp Hydra vulgaris, i.e. their mortality rate doesn’t increase with age, and they retain similar levels of health throughout their lives. Unfortunately, humans don’t belong in this group, the same holds true for most lab animals. But these surprising species may have some traits that could point to strategies against ageing as we know it in humans; human ageing comprises many factors: the slowdown of biological processes, the shrinking of organs, the deposit of lipofuscin, the accumulation of genetic mutations, etc.

 

Rita Levi Montalcini was an Italian neurobiologist who was awarded the 1986 Nobel Prize in Physiology or Medicine for her discovery of nerve growth factor, together with Stanley Cohen. She celebrated her 103rd birthday in 2012 and died the same year. Photo: Peter Badge

Rita Levi Montalcini was an Italian neurobiologist who received the 1986 Nobel Prize in Physiology or Medicine for her discovery of nerve growth factor, together with Stanley Cohen. She celebrated her 103rd birthday in April 2012. Photo: Peter Badge

7. Game changer: advances in medicine

Several researchers argue that Jan Vijg’s team didn’t take the medical advances of the future into account, that might target the afore mentioned ageing processes, as well many deadly diseases. “The result in this paper is absolutely correct, but it says nothing about the potential of future medicine, only the performance of today’s and yesterday’s medicine,” says biomedical gerontologist Aubrey de Grey of the SENS Research Foundation in Mountain View, California. Conversely, potentially negative trends like the global obesity epidemic, with the side effects of soaring type 2 diabetes and nonalcoholic fatty liver disease numbers, are also not taken into account.

 

8. New trends lower life expectancy

Even today, the increase in life expectancy is being reversed in developed countries for certain groups. As Nobel Laureate Angus Deaton and Prof. Anne Case showed, white middle-aged Americans without college degrees are dying younger than in the past. For all other ethnic groups, life expectancy is still rising in the US, but for this group it’s falling. The researchers could also explain how prescription drug abuse, alcohol and suicide shortens the lives of too many middle-aged Americans.

 

9. Centenarians are exceptions, not examples

Centenarians seem to be quite an exceptional group, as a recent German study showed, again: One third of the patients over 100 years of age didn’t show any signs of dementia, three quarters were not depressed, almost a quarter didn’t take any drugs on a regular basis, and an astounding 65 percent hadn’t been admitted to hospital in the last twelve months. If this group is so healthy, gerontological research might learn a lot from them – but because they’re so special, maybe they’re not the best group to predict everyone’s ageing process.

 

10. Longer life due to Nobel prize

Winning the Nobel prize adds one or two years of life expectancy. The British economists Matthew Rablen and Andrew Oswald wrote: “It has been known for centuries that the rich and famous have longer lives than the poor and ordinary,” but the causality behind that remained unclear. That’s why they looked for cases where a sudden rise in status occured, and biographical data were also available: they found Nobel Laureates. And really: the positive status shock of winning a Nobel prize adds one or two years compared to researchers of the same age and from the same country who were merely nominated for this prestigious prize.

 

Only time and future studies will tell if humanity has already reached an ‘age ceiling’ – or not. But if we consider quality of life together with the quantity of years, it becomes evident that adding years doesn’t automatically mean more healthy years. On the contrary, additional years often mean more years of disease. This is why Jan Vijg wrote in his study that we should pay more attention to our  ‘health span’ instead of concentrating solely on our lifespan.

 

Exercise is a vital ingredient both to longevity and to healthy ageing. Others are: normal weight, a diet rich in fibres and low in sugar and red meat - and meeting people, having fun and playing games to ward off dementia. Photo: iStock.com/Horsche

Exercise is a vital ingredient both to longevity and to healthy ageing. Others are: normal weight, a diet rich in fibres and low in sugar and red meat – and meeting people, having fun and playing games to ward off dementia. Photo: iStock.com/Horsche

Langlebigkeit: zehn erstaunliche Aspekte

Steigende Lebenserwartung seit 1840: anfangs sank vor allem die Kindersterblichkeit, ab Ende des 19. Jahrhunderts wurden Infektionen mit Impfungen bekämpft, im 20. Jahrhundert mit Antibiotika. Quelle: US National Institute on Aging, mit Daten von der Human Mortality Database

Steigende Lebenserwartung seit 1840: Anfangs sank vor allem die Kindersterblichkeit, ab Ende des 19. Jahrhunderts wurden Infektionskrankheiten mit Impfungen bekämpft, im 20. Jahrhundert mit Antibiotika. Quelle: US National Institute on Aging, mit Daten von der Human Mortality Database

In den entwickelten Ländern steigt die durchschnittliche Lebenserwartung weiterhin unbeirrt um drei Monate pro Jahr für Frauen, etwas langsamer für Männer. Auch die Entwicklungsländer konnten seit der Mitte des 20. Jahrhunderts deutliche Anstiege verzeichnen, aber es gab auch Rückschläge wie die HIV-Epidemie in Afrika.
Diesen Trend der linear steigenden Lebenserwartung existiert in Europa und den USA seit dem mittleren 19. Jahrhundert, und er hat eine langlebige wissenschaftliche Debatte ausgelöst: Wird es endlos so weitergehen? Oder gibt es eine natürliche Obergrenze für menschliches Leben? Der neueste Beitrag zu diesen Fragen stammt aus dem Albert Einstein College of Medicine in New York.

 

1. Älteste Gruppe wächst nicht mehr
In dieser Studie analysiert der amerikanisch-niederländische Genetiker Jan Vijg die Daten der ‘Human Mortality Database’, einer Datenbank mit Sterbedaten aus 38 Ländern, die von deutschen und amerikanischen Forschern gemeinsam betrieben wird. Da die durchschnittliche Lebenserwartung weiterhin ansteigt, benötigten die Forscher eine andere These, um einer möglichen künftigen Abremsung auf die Schliche zu kommen. Sie sagten sich: Wenn es keine absolute Obergrenze gäbe, dann müsste eigentlich die Gruppe mit dem größten Zuwachs immer älter werden. Das stimmt aber nicht. Stattdessen stellten sie fest, dass diese Gruppe seit ungefähr 1980 bei 99 Jahren stagniert, seitdem ist deren Alter nur minimal gestiegen. Diesen Plateau-Effekt interpretieren sie als einen ersten Hinweis auf eine Verlangsamung des Anstiegs.

 

2. Hochbetagte selten älter als 115
Um weitere Effekte in diese Richtung zu finden, untersuchte Jan Vijg und seine Mitarbeiter als nächstes die Daten der Langlebigkeits-Datenbank (International Database on Longevity), die vom Max-Planck-Institut für demografische Forschung in Rostock betrieben wird. Achtung: Jetzt geht es um das Alter einzelner Individuum, im vorigen Punkt ging es um Altersgruppen. Das Vijg-Team fand heraus, dass seit den 1990er Jahren kaum jemand älter als 115 Jahre wurde, mit wenigen Ausnahmen. Das maximale Alter steigt also kaum noch – ein weiterer Hinweis auf eine Verlangsamung. “Es erscheint mir sehr wahrscheinlich, dass wir eine ‘Decke’ erreicht haben”, kommentiert Vijg. “Wir müssen konstatieren: Das war’s. Die Menschen werden nicht mehr älter werden als 115.”

 

3. In Japan laufen die Uhren anders
Die Langlebigkeits-Datenbank, auf deren Daten sich das Team von Vijg bezieht, wurde vom Max-Planck-Institut für demografische Forschung eingerichtet, das auch die ‘Human Mortality Database’ mit betreibt. Gründungsdirektor James Vaupel teilt allerdings die Interpretation seiner Kollegen aus New York nicht. Einer seiner Einwände lautet: In Japan, einem sehr wichtigen Land für Demografen, wird die Altergruppe mit der höchsten Wachstumsrate weiterhin immer älter, ebenso in einzelnen europäischen Ländern. In einem früheren Artikel schrieb Direktor Vaupel zusammen mit Jim Oeppen: Vorhersagen, dass “die steigende Lebenserwartung an eine Decke stößt… wurden bereits vielfach gemacht und widerlegt.”

 

Jedes dritte Baby, das heute in Großbritannien zur Welt kommt, wird voraussichtlich seinen 100. Geburtstag feiern können, mein die britische Nationale Statistikbehörde. Foto:  iStock.com/David Freund

Jedes dritte Baby, das heute in Großbritannien zur Welt kommt, wird voraussichtlich seinen 100. Geburtstag feiern können, laut der britischen Nationale Statistikbehörde ONS. Foto: iStock.com/David Freund

4. Höchste Lebenserwartung, niedrigste Geburtenrate
Wegen der höchsten Lebenserwartung weltweit kann Japan als Lieblingsland der Demografen bezeichnet werden: Gegenwärtig beträgt sie 86,8 Jahre für Frauen und 80,5 Jahre für Männer. Gleichzeitig weist Japan eine der niedrigsten Geburtenraten der Welt auf, zusammen mit Südkorea, Deutschland, Italien, Spanien und Griechenland. Die Zahlen einer Art Bevölkerungs-Uhr, kürzlich auf einer Website der Universität Tokyo installiert, ergeben, dass voraussichtlich im Jahr 3776 das letzte japanische Kind geboren werden wird, wenn kein Trend sich umkehrt – und spätestens hundert Jahre später werden die Japaner komplett aussterben. Manche Hochrechnungen ergeben auch, dass in Japan bereits 2050 über eine Million Hundertjährige leben könnten.

 

5. Kann Altern rückgängig gemacht werden?
In allen Tiermodellen kann die Lebensspanne verlängert werden, sei es durch genetische Veränderungen, durch Nahrungsumstellung oder bestimmte Proteine. Viele Forscherteams weltweit arbeiten mit unterschiedlichen Spezies an dieser Frage, so auch mehrere Gruppen an Vaupels Institut in Rostock. Warum sollten Menschen bei diesem Thema die absolute Ausnahme sein? “Es gibt keine Zeitbombe, die in einem bestimmten Alter losgeht”, kommentiert Direktorin Linda Partridge vom Max-Planck-Institut für Biologie des Alterns die Ergebnisse ihrer New Yorker Kollegen. Auch sie hat sich auf Alterungsprozesse spezialisiert und darauf, wie man diese aufhalten oder rückgängig machen kann. In den letzten Jahren gab es tatsächlich ein paar spektakuläre Versuche, bei denen das Altern von Mäusen und von menschlichen Zellkulturen mit Telomerase rückgängig gemacht werden konnte.

 

6. Tiere, die nicht altern
Manche Spezies altern nicht, das heißt, ihre Sterblichkeit steigt mit zunehmendem Alter nicht an und sie erfreuen sich gleichbleibender Gesundheit. Prof. Annette Baudisch studierte solche Tiere, zum Beispiel Rotkelchen oder den Süßwasserpolyp Hydra vulgaris. Leider gehören wir Menschen nicht in diese Gruppe, auch den meisten Labortieren ist das nicht vergönnt. Doch diese ungewöhnlichen Tiere könnten manche Eigenschaften haben, die Wege zeigen, wie man das menschliche Altern bekämpfen kann, das sich aus vielen verschiedenen Faktoren zusammensetzt: verlangsamte biologische Prozesse, schrumpfende Organe, Ablagerung von Alterspigment, angesammelte Gendefekte, usw.

 

Rita Levi Montalcini war eine italienische Neurobiologin. Sie erhielt den Medizinnobelpreis 1986 für die Entdeckung des Nervenwachstumsfaktors, zusammen mit Stanley Cohen. Im April 2012 feierte sie ihren 103. Geburtstag. Foto: Peter Badge

Rita Levi Montalcini war eine italienische Neurobiologin. Sie erhielt den Medizinnobelpreis 1986 für die Entdeckung des Nervenwachstumsfaktors, zusammen mit Stanley Cohen. Im April 2012 feierte sie ihren 103. Geburtstag. Foto: Peter Badge

7. Medizinischer Fortschritt
Mehrere Forscher haben kritisch angemerkt, dass das Team um Jan Vijg künftige Fortschritte in der Medizin nicht eingerechnet hätte, die sich auch gegen die genannten Alterungsprozesse richten könnten, sowie die Behandlung heute tödlicher Krankheiten stark verbessern werden. “Die Ergebnisse dieser Studie sind absolut korrekt, sie besagt allerdings nichts über die Medizin der Zukunft, sie bewertet nur die Fähigkeiten der heutigen und gestrigen Medizin”, erklärt Aubrey de Grey, ein Gerontologe von der SENS Research Foundation in Mountain View, Kalifornien. Umgekehrt sind aber potentiell negative Trends auch nicht eingerechnet, wie die weltweit um sich greifende Epidemie der Fettleibigkeit, die einen steilen Anstieg von Diabetes-Fällen nach sich zieht, ebenso die neue Erkrankung Nicht-alkoholische Fettleber, die bald die häufigste Ursache für Lebertransplantationen in den USA sein wird.

 

8. Unerwartet sinkende Lebenserwartung
Schon heute gibt es bei bestimmten Bevölkerungsgruppen in der entwickelten Welt einen Rückgang der Lebenserwartung. Wirtschaftsnobelpreisträger Angus Deaton konnte zusammen mit Prof. Anne Case zeigen, dass weiße Amerikaner mittleren Alters ohne höhere Bildung heute früher sterben als in vergangenen Jahren. Alle anderen US-amerikanischen Bevölkerungsgruppen erfreuen sich nach wie vor einer steigenden Lebenserwartung, nur für diese Gruppe hat sich der Trend umgekehrt. Die Forscher fanden heraus, dass vor allem Alkohol-, Drogen- und Medikamentenmissbrauch, sowie Selbstmorde für diese erschreckende Trendumkehr verantwortlich sind.

 

9. Hundertjährige sind Ausnahmen
Eine neue Studie der AOK Nordost zeigte mal wieder, dass Hundertjährige eine ganz besondere Gruppe sind: Ein Drittel der untersuchten Patienten über 100 zeigte keinerlei Anzeichen von Demenz, drei Viertel waren überhaupt nicht depressiv, knapp ein Viertel nahm nicht regelmäßig Medikamente, und erstaunliche 65 Prozent hatte im Studienjahr 2015 keinen Tag im Krankenhaus verbracht. Gerontologen können sicher viel von dieser ungewöhnlichen Gruppe lernen – aber sie eignet sich nicht unbedingt, um den allgemeinen Alterungsprozess zu beschreiben.

 

10. Länger leben mit Nobelpreis
Wer einen Nobelpreis erhält, bekommt gleichzeitig bis zu zwei Jahre Lebenszeit hinzu. Die beiden britischen Ökonomen Matthew Rablen und Andrew Oswald wollten der Frage nachgehen, warum weltweit die Reichen und Berühmten länger leben als die Armen und Unbekannten. Das Phänomen ist zwar seit Jahrhunderten bekannt, aber die ursächliche Erklärung ist nur unzureichend erforscht. Also suchten sie eine Gruppe, die schlagartig eine große Portion ‘Status’ erhält – und fanden die Nobelpreisträger. Tatsächlich bedeutet der prestigeträchtige Preis, dass die Empfänger durch den ‘positiven Status-Schock’ bis zu zwei Lebensjahre dazugewinnen, sogar verglichen mit Forschern gleichen Alters aus dem gleichen Land, die ebenfalls für einen Nobelpreis nominiert waren.

 

Nur die Zukunft und künftige Studien werden klären können, ob die Menschheit tatsächlich schon die ‘Decke’ der Lebenserwartung erreicht hat oder nicht. Wenn man jedoch nicht nur die Menge an Jahren betrachtet, sondern auch die Lebensqualität, wird schnell klar, dass zusätzliche Jahre nicht immer auch gesunde Jahre sind. Ganz im Gegenteil: Mehr Lebensjahre bedeuten häufig auch mehr Krankheitsjahre. Deshalb schließt Jan Vijg seine Studie auch mit dem Hinweise auf die ‘Gesundheitsspanne’, Englisch ‘health span’, auf die wir uns künftig konzentrieren sollten, anstatt immer nur auf die quantitative Lebensspanne zu achten.

 

Bewegung und Sport sind unverzichtbar, wenn man gesund alt werden möchte. Ferner ist es wichtig, sein Gewicht zu halten, wenig Zucker und rotes Fleisch, dafür aber viele Ballaststoffe zu essen, wie sie in Rohkost, Obst, Gemüse und Vollkornprodukten enthalten sind. Und man sollte häufig andere Menschen treffen, Spaß haben und Spiele Speilen - um eine beginnende Demenz im Zaum zu halten. Foto: iStock.com/Horsche

Bewegung und Sport sind unverzichtbar, wenn man gesund alt werden möchte. Ferner ist es wichtig, das Gewicht zu halten, wenig Zucker und rotes Fleisch, dafür aber viele Ballaststoffe zu essen. Und man sollte regelmäßig andere Menschen treffen, mit ihnen Spaß haben und Spiele spielen – auch, um einer Demenz vorzubeugen. Foto: iStock.com/Horsche

Life in Super-Resolution: Light Microscopy Beyond the Diffraction Limit

In 1979, South African Allan M. Cormack won the Nobel Prize in Physiology or Medicine for his development of X-ray computed assisted tomography (CT), which allows physicians to see internal bodily structures without cutting. A quarter of a century later, Sir Peter Mansfield of the United Kingdom was given the same award in 2003 for advances in magnetic resonance imaging (MRI) that led to scans taking seconds rather than hours.

Today, these two imaging techniques serve as essential diagnostic and investigative tools for both medicine and the life sciences. But one unique fact about Cormack and Mansfield stands out: Despite winning the most prestigious award in medicine, neither Laureate went to medical school nor had a background in biology — rather, they were both true-blue physicists.

Cormack spent most of his research career focusing on nuclear and particle physics, while his CT efforts remained an intermittent side project for almost two decades. For Mansfield, his postdoctoral work on nuclear magnetic resonance spectroscopy in doped metals gradually transitioned into scanning his first live human subject with the newly invented MRI technique.

The tradition of physicists driving advances in biomedical imaging continues, as made evident by the lectures of Steven Chu and Stefan Hell at the 66th Lindau Nobel Laureate Meeting. Both showed visually stunning examples of their research using super-resolution microscopy, a method that transcends the diffraction limit of conventional light microscopes to probe on a nanoscopic scale.

27720033840_6b1a74ad37_k

Stefan Hell in discussion with young scientists at #LiNo16. Photo: Ch. Flemming/Lindau Nobel Laureate Meetings

“We learn in school that the resolution of a light microscope is fundamentally limited by diffraction to about half the wavelength of light,” said Hell, who gave his lecture on Thursday morning. “And if you want to see smaller things, you have to resort of course to electron microscopy.”

Hell, a physicist who currently serves as a director of the Max Planck Institute for Biophysical Chemistry in Germany, accomplished what was long thought to be the impossible. Using light microscopy and fluorescent labeling of molecules, he invented a super-resolution technique called stimulated emission depletion (STED) microscopy — the work that won him the 2014 Nobel Prize in Chemistry.

“The development of STED microscopy showed that there is physics in this world that allows you to overcome this diffraction barrier,” he said. “If you play out that physics in a clever way, you can see features that are much finer and details that are beyond the diffraction barrier.”

A conventional microscope cannot distinguish objects — say, molecules — that are packed within a space of about 200 nanometers because they all become flooded with light at the same time. Subsequently, a detector will simply record the scattering as a blurry blob of light without being able to image any individual molecules.

Hell got the idea of highlighting one molecule at a time by using fluorescent labeling, while also keeping other molecules in a dark state through stimulated emission. With a phase modulator, he could then force molecules in a doughnut-shaped area to stay dark and in the ground state while those in the center would produce light.

With this discovery, biomedical researchers could now image objects as tiny as proteins on the outside of a virus. For instance, STED microscopy was used to observe a major difference in envelope protein distribution that can be used to distinguish mature HIV that can infect cells versus those immature viruses that cannot.

“The misconception was that people thought that microscopy resolution was just about waves, but it’s not — microscopy resolution is about waves and states,” Hell emphasized. “And if you see it through the eyes of the opportunities of the states, the light microscope becomes very, very powerful.”

Steven Chu referenced Hell’s groundbreaking research during his lecture on Wednesday morning, which focused on his recent efforts in optical microscopy — quite a departure from his previous work in energy during a decade-long sabbatical.

“I sat down fresh out of government with no lab, no students, no postdocs, no money,” said Chu, who served as U.S. Secretary of Energy from 2009 to 2013. “The only thing that I could do was think, and that turns out to be liberating.”

28000060355_52c26b2ad5_k

Steven Chu during his lecture. Photo: Ch. Flemming/Lindau Nobel Laureate Meetings

A venerable jack-of-all-trades, Chu received the 1997 Nobel Prize in Physics in yet another field — atomic physics — for his development of laser cooling and trapping techniques. His latest interest in microscopy grew out of a fascination with cell signaling and how dysfunctions in the process can lead to cancer.

“If you’re a cell embedded in an organism’s tissue, you don’t willy-nilly divide — that’s considered very antisocial behavior. You divide when the surrounding tissue says it’s okay to divide,” he described. “But if you willy-nilly divide and say ‘me-me-me,’ that is called cancer.”

Using imaging techniques, the cell signaling pathway can be investigated in detail to target areas that could prevent cancer from developing. Taking Hell’s work in super-resolution microscopy a step further, Chu discussed his use of rare earths embedded in nanocrystals to replace fluorescent organic dyes. A nanocrystal can be doped with 5,000 to 10,000 impurities so it emits a certain color in the near-infrared with a very narrow spectral peak. If each class of nanoparticle is synthesized to produce a different ratio of colors, this creates a spectral barcoding of probes.

The next step is to use nanoparticle probes to image molecules through tissue in a living organism without cutting. Adaptive optics — a technique that originated in astronomy — has been employed in order to take light scattering into account, enabling high-resolution microscopy of mouse brain tissue through an intact skull.

“The question is if you go deeper into the infrared, can you look not through 500 microns but maybe 5 millimeters?” said Chu. “This is an open question we’re working on this. We’ve gotten down to a millimeter but we’ll see.”

One of his ideas involves inserting nanoparticles into cancer cells and watch them over time in order to track which cells metastasize, with the ultimate goal of developing future therapies.