Lessons Learned at the Lindau Meeting

My main goal for the Lindau Meeting was not to discuss specific scientific matters (although I must confess that I did), but it was to discuss general problematic issues in science and in society. The meeting exceeded all of my expectations. The Nobel Laureates gave amazing lectures, which were  followed by insightful and enriching discussions. My take away messages were: work hard and pursue your goals, keep your eyes wide open for unexpected results, be flexible and do not fear the unknown, always question yourself and your observations.


Matías Acosta with other young scientists and Nobel Laureate George Smoot during the 67th Lindau Meeting. Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings

Matías Acosta with young scientist Jeffrey Poon and Nobel Laureate George Smoot during the 67th Lindau Meeting. Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings


The first lesson learned: science is not a separate entity from society. We, young scientists, should communicate science to broad audiences. As pointed out by chemist Michael Lerch, we should remember our role within society and clarify the expectations of our work. This is especially true if our project is financed by public funding. We should not forget though that there are scientific reporters quite eager to communicate our work. So we have not one but two approaches to improving the disconnection between science and the public.

Young scientists are facing a constantly growing pressure of having to publish. Publishing for the sake of publishing rather than a mean to transmit knowledge has become a reality in many research groups. We are not in a strong position to combat this issue. However, there are some aspects that we should keep in mind to combat it and also improve the quality of publications.

For example, we should always stay ethical. Young scientist Karen Stroobants proposed that an important complement to our doctorate would be to receive ethical training, which received general support. We can also ask senior colleagues in case we have ethical issues or even search for ethical guidelines such as proposed by the National Academy of Sciences. Staying ethical is, in fact, part of our responsibility to help us establish a trustful connection with the public.


Karen Stroobants, Michael Lerch and Director-General of the OPCW Ahmet Üzümcü during a panel discussion at the 67th Lindau Meeting. Photo/Credit: lvd/Lindau Nobel Laureate Mettings

Karen Stroobants, Michael Lerch and Ahmet Üzümcü, Director-General of the OPCW, during the panel discussion Ethics in Science at the 67th Lindau Meeting, Photo/Credit: lvd/Lindau Nobel Laureate Meetings


Furthermore, publishing scientific work does not need to be limited to journals. Preprints precede journal publications and offer an attractive complement. Martin Chalfie highlighted the importance of preprints for open access, a fast time-stamp and potentially a more transparent reviewing process. The preprint archive arXiv has been accepted in the physics community since the 1990s. Currently, analogous preprint archives are being created in other communities too, so we should give them a try.

Martin Chalfie also taught us a remarkable exercise that he carries out in his group: a member of his group selects a preprinted paper on a cutting-edge topic related to their own research. They discuss this study during their group meetings, and constructive comments are sent to the preprint authors. This exercise raises new ideas in his group as well as in the authors’ one. It also helps to improve the quality of the future journal publication. This seems like a great scheme to adopt.


Martin Chalfie during his lecture at the 67th Lindau Meeting. Photo/Credit: Julia Nimke/Lindau Nobel Laureate Meetings

Martin Chalfie during his lecture at the 67th Lindau Meeting, Photo/Credit: Julia Nimke/Lindau Nobel Laureate Meetings


The atmosphere of the Lindau Nobel Laureate Meeting was unique. I met inspiring colleagues from all over the world, with whom I shared very nice experiences. Taking part in the Lindau Meeting made us feel privileged. We do science because we are curious; we want to understand more about the universe. But we also should keep in mind that our work can have a long-lasting impact in society. I believe that many of the young scientists that I met will become future leaders. So, as young scientist Florencia Marchini said, “when one becomes conscious of the social and economic impact that our work can create, to take action is a matter of responsibility more than an obligation or a choice.” We do not need to open our eyes too wide to see all the problems that science and society are facing; it is our responsibility to get involved to solve them. We learned valuable lessons during the Lindau Meeting; now is the time to put them into practice and share them.

Some Surprising Words of Wisdom

Lindau Alumna Karen Stroobants during the Panel Discussion 'Ethics in Science' at the 67th Lindau Nobel Laureate Meeting, Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings

Lindau Alumna Karen Stroobants during the Panel Discussion ‘Ethics in Science’ at the 67th Lindau Nobel Laureate Meeting, Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings


We have had the privilege to take part in an event that I am sure we will talk about for long, and remember forever.

 This week, we have been educated by the most innovative chemists, and scientists, alive today. And where we indeed expected to learn about protein structures, novel methodologies and reaction mechanisms, some other words of wisdom genuinely came as a surprise. Harald zur Hausen, for example, has pointed out to us how important it is to acknowledge all contributors of ones work, whether they are human or collaborating cattle. Dan Shechtman has given us some essential dating advice; “thermodynamically, the perfect partner does not exist”. And according to William Moerner, watching ‘The Simpsons’ should be a fairly accurate method to predict whether one will obtain a Nobel Prize.


Martin Chalfie at the Science Picnic with young scientists during the 67th Lindau Nobel Laureate Meeting, Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings

Nobel Laureate Martin Chalfie and young scientists during the 67th Lindau Nobel Laureate Meeting, Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings


 We have been inspired by Nobel Laureates, who have really engaged with us throughout this week. I personally decided to take up my studies in chemistry after learning about Marie Sklodowska-Curie, and I am sure many of us have been strengthened in our enthusiasm to pursuit the scientific profession after engaging with all the role models we met here in Lindau. In addition to the inspiration we have all gained in our specific fields, I hope we collectively have been inspired to deposit our pre-prints in online archives. Many of us recognise problems in the current academic culture, and let me remind you that we are the next generation of academics, and we have the possibility to reshape this culture. We can start today, and the concept presented by Martin Chalfie can be our first step in this endeavour.

 We have connected, not only with Nobel Laureates but also with one another. All of you have expressed creative ideas, contagious enthusiasm and profound confidence during our conversations. However, I could not but notice that those young scientists who are attracted by the academic career path showed more of this confidence than those who are considering other directions. Of course as Peter Agre mentioned, I hope many of us will reach our scientific aspirations. I want to encourage in particular the motivated women I have met, so that Ada Yonath will over time enjoy female company on the Lindau stage.


Lindau Alumna Karen Stroobants at lunch with Nobel Laureate Aaron Ciechanover during the 67th Lindau Nobel Laureate Meeting , Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings

Lindau Alumna Karen Stroobants at lunch with Nobel Laureate Aaron Ciechanover during the 67th Lindau Nobel Laureate Meeting , Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings


To the few who have, with hesitation, expressed their passion to become a teacher, please remember that Ben Feringa might not have taken up a career in science was it not for his high school teacher. To those who have discussed potential opportunities in the policy field, let me remind you that during the opening keynote lecture of this event, Steven Chu would have liked to tell us that science should always be coupled to society, economics, and politics. We need teachers and policy makers, who advocate for the scientific method, at least as much as we need Nobel Prize winners. So whatever career path you decide on, please let it be a positive choice, and one that will enable you to have fun.

Faster Progress for Everyone

Martin Chalfie is promoting preprint archives for biological research papers that will make new results and findings accessible to a significantly bigger audience much faster.


Credit: exdez/iStock.com

Credit: exdez/iStock.com


Important questions that kept cropping up during the 67th Lindau Nobel Laureate Meeting include what the future of research can and will look like and how the status quo can be improved. Beside the oft-mentioned political events and their influence on science, another major issue concerns an intrinsic problem: the publication machinery and the importance of the impact factor. Shortly before the meeting, a number of Nobel Laureates publicly criticised the current journal-ranking method. During the meeting, Martin Chalfie also expressed his view that publications should be assessed more on the basis of their factual quality and less on which journal they appear in. I asked him what he had in mind as an alternative and what steps, if any, he has taken. His solution is: ASAPbio.org – Accelerating Science and Publication in Biology.

ASAPbio is an advocacy group founded by Ron Vale – an initiative instigated by scientists for scientists it aims to make new discoveries within the life science available to a broad audience much faster than previously possible. Chalfie helped launched the initiative in early 2016 together with Harold Varmus, Daniel Colón-Ramos and Jessica Polka, now the director of ASAPbio. “We wanted to develop a preprint archive for biological research. There has been something similar in physics for at least a quarter of a century.” As soon as researchers are ready to share their work and findings with the world, Chalfie continues, they can upload their articles to a preprint archive, where it can then be read and commented on by other scientists as well as by the general public. The largest preprint server for life science-related articles has thus far been bioRxiv. ASAPbio aims to provide an open access centralised and comprehensive repository for all life sciences. “This changes the overall dynamics of the publication process,” Chalfie says. The conventional publication pathway looks quite different: A scientific paper is submitted to a suitable journal. In an initial step, one or more editors then decide whether the paper is appropriate material for the journal in question. If the editors give the go-ahead, the paper is passed on to several experts in the field. They then form a picture of the work and can, if they deem it necessary, reject the paper as deficient or request further experiments. In such cases, the authors have several months to make the requested changes before a final decision is made, which can still be negative even after suggested changes have been made. All in all, the decision-making process can take from several months to a year, and if the paper is ultimately rejected, the authors have to submit it afresh to another journal. As a result, not only the authors lose valuable time but also the research community and the public at large, who have no access to the new findings during the decision-making process. “By contrast, preprint archives make new discoveries and research advances immediately available to everyone – whether scientists or students – and they do so free of charge,” Chalfie says, summarising the advantages.

Moreover, each paper is automatically assigned a definite submission date which the authors can refer to should a similar work be published soon afterwards.

However, Chalfie, points out, “it’s not about publishing raw data at an early stage.” Instead, a manuscript should be uploaded to an archive platform at the same time as it is submitted to a journal. It is then revised in stages in response to feedback from the journal and comments submitted via the platform.



Martin Chalfie talking to young scientists during the 67th Lindau Nobel Laureate Meeting,  Photo/Credit: Julia Nimke/Lindau Nobel Laureate Meetings

Martin Chalfie talking to young scientists during the 67th Lindau Nobel Laureate Meeting, Photo/Credit: Julia Nimke/Lindau Nobel Laureate Meetings


“During one of the first organisational meetings, we talked about how the established journals would be likely to react to such an initiative and these platforms. Fortunately, the major journals such as Science, Nature, the journals of professional societies and many others all support the idea of preprint archives and the general repository,” Chalfie explains. The journals have no problem with authors submitting their papers to them and uploading them to a platform simultaneously. Many journals even allow “joint submissions”, meaning that they ask authors whether they want to make their papers available on an archive server at the same time.

Another sign that this new pre-release system will catch on in the long term is the acceptance of such prearchived work as a criterion for grants, the allocation of project funds and similar selection procedures. “The Howard Hughes Medical Institute, the NIH, the Wellcome Trust and many universities now consider papers in the preprint archive in their evaluation of applicants,” as Chalfie relates proudly.

Although the new preprint archives as well as the general repository for biological research are still in their infancy compared to the fields of physics, and they have yet to be discovered by many scientists, they have already been acknowledged and accepted by major research institutes and renowned journals. Therefore, advocacy groups such as ASAPBio offer an excellent opportunity to take the cumbersome publication process in the life sciences to a new direction and focus once again on the actual quality of research work instead of mere impact factors.

Für die Wissenschaft einstehen, bis es “klick” macht

Die 67. Lindauer Nobelpreisträgertagung neigt sich dem Ende zu. Die aktuellen politischen Ereignisse hinterlassen ihre Spuren, doch die Laureaten ermuntern die Nachwuchswissenschaftler zu Durchhaltevermögen und Leidenschaft für die Forschung.

Passend zum Abschluss der letzten Veranstaltung im Saal des großen Stadttheaters ertönt ein heftiges Gewitterdonnern – wie als Warnung an die Teilnehmer, sie mögen doch bitte wirklich all die neuen Forschungsfakten, sowie Vor- und Ratschläge verinnerlichen und mit nach Hause nehmen. Tag 4 und damit der letzte reguläre Programmtag der Lindauer Nobelpreisträgertagung neigt sich dem Ende zu. 


Nachwuchswissenschaftler unterhalten sich mit Nobelpreisträger Martin Chalfie während der 67. Lindauer Tagung, Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings

Nachwuchswissenschaftler mit Nobelpreisträger Martin Chalfie während der 67. Lindauer Tagung, Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings

Die Woche war vollgepackt und doch viel zu kurz: die ersten Veranstaltungen, die sogenannten Science Breakfasts, behandelten Kernthemen wie Circular Economy, CO2 Recycling oder die Chemie des Geschmacks, und begannen bereits um 7 Uhr morgens. Und doch reichte die Zeit kaum aus, sich mit allen Teilnehmern über die neuesten Forschungsergebnisse, die (wissenschafts-) politischen Entwicklungen weltweit, oder einfach ihre eigene interessante internationale Geschichte auszutauschen. Denn genau das ist das erklärte Ziel der Lindauer Woche: der Austausch zwischen Nachwuchswissenschaftlern und Preisträgern sowie zwischen allen anderen Teilnehmern – je weiter entfernt des anderen Expertise von der eigenen, umso wertvoller ist der Gedankenaustausch.

Interessanterweise kam bei so einem Austausch ein Raum von etwa 50 Chemikern während des Circular Economy Science Breakfast mit dem Gastgeber BASF zu einer eher sozial-ökonomischen Erkenntnis, die Walter Gilbert von der Harvard Universität auf den Punkt brachte: „Die Wissenschaft kann Lösungen bieten – umgesetzt werden müssen diese aber von allen zusammen.“ Er bezog sich hierbei vor allem auf neue umweltschonende Technologien, die zwar von der Grundlagenforschung her bereits durchaus realisierbar sind, aber von den Konsumenten noch nicht angenommen werden. Er und die Teilnehmer sahen hier vor allem die Forschung in der Pflicht, die Vorteile der neuen Entwicklungen so lange zu erklären, zu verdeutlichen und anzupreisen, bis sie tatsächlich in das Allgemeinverständnis und den Alltag übergegangen sind.


Nachwuchswissenschaftler unterhalten sich mit Nobelrpreisträger Robert Huber beim BASF Science Breakfast.  Credit: Christian Flemming/Lindau Nobel Laureate Meetings

Nachwuchswissenschaftler unterhalten sich mit Nobelrpreisträger Robert Huber beim BASF Science Breakfast. Credit: Christian Flemming/Lindau Nobel Laureate Meetings

Neben der exzellenten Forschung schlängelte sich auch die zur Zeit international schwierige Situation der Forschung durch die Veranstaltung. Vor allem die Nachwuchsforscher sehen sich inzwischen vielfach extrem wissenschaftsfeindlicher Einstellungen ausgesetzt, und suchen Rat, wie sie am besten damit umgehen sollen. Die nahezu einhellige Meinung der Laureaten: den Mund aufmachen und für die Forschung und wissenschaftliche Fakten einstehen.

Dazu gehört eine fundierte, sachliche, aber auch beherzte Wissenschaftskommunikation, die neue Erkenntnisse nicht nur unter Wissenschaftlern, sondern auch einer breiten Öffentlichkeit zugänglich machen sollte. Weder die Forscher noch die Wissenschaftsjournalisten sollten sich hierzu hinter Fachjargon oder Plattitüden verstecken. Und in der Panel Discussion Science Careers rief Sir John E. Walker die Nachwuchswissenschaftler sogar zu einer Karriere als Politiker oder Politikberater auf: „Die Politiker können nur fundierte Entscheidungen treffen, wenn sie gut informiert sind und die Materie verstehen. Dazu brauchen sie euch!“ Er und seine Panelmitstreiter May Shana’a (Beiersdorf AG), Dan Shechtman (Nobelpreiträger am Weizmann Institut), Wiltrud Treffenfeldt (Dow Europe GmbH) und Thomas Gianetti (ETH Zürich) sehen es schlicht als Pflicht der Wissenschaftler an, für die Forschung und deren Ergebnisse einzustehen.


Podiumsdiskussion zum Thema

Podiumsdiskussion zum Thema “Science Careers”, Credit: Julia Nimke/Lindau Nobel Laureate Meetings

Außerdem forderten die Laureaten die jungen Forscher vielfach dazu auf, auch abseits der bekannten und bequemen Pfade zu forschen, um so wieder große Durchbrüche zu schaffen. Martin Chalfie und viele andere erzählen Anekdoten, wie wahrlich neue Erkenntnisse oft durch Fehlversuche zu Stande kamen. Anstatt die Fehlversuche als Versagen zu werten, sollten die Nachwuchswissenschaftler die Freude an der Forschung nicht verlieren, und unerwartete Ergebnisse zu schätzen lernen. Ein High-Impact-Paper sei schließlich kein Garant für spätere Erfolge. Solange die Forscher aber mit echter Leidenschaft an einem Thema arbeiten, hätten sie ausgezeichnete Chancen für eine erfolgreiche Zukunft, so Dan Shechtman. Ohnehin, seien mindestens die Hälfte der naturwissenschaftlichen Arbeiten, die später mit einem Nobelpreis ausgezeichnet wurden, in vergleichsweise kleinen Journals mit eher niedrigem Impact-Factor publiziert worden, sagt Martin Chalfie.

Am letzten Tag der Veranstaltung findet noch die traditionelle Bootsfahrt zur Insel Mainau statt. Dort werden Bettina Gräfin Bernadotte und Björn Graf Bernadotte noch einmal die Tagung Revue passieren lassen, und dort wird auch die letzte Panel Discussion zum Thema Ethics in Science abgehalten. Ich bin mir sicher, dass auch hier die Nachwuchswissenschaftler noch einmal aufgefordert werden „alternative Fakten“ nicht einfach stillschweigend hinzunehmen, sondern so lange für die Forschung zu werben, bis auch der letzte Kritiker überzeugt ist.

Schnellerer Fortschritt für alle

Martin Chalfie setzt sich für Preprint-Archive für biologische Forschungsarbeiten ein: Dadurch können neue Ergebnisse und Erkenntnisse wesentlich früher einem deutlich größerem Publikum zugänglich gemacht werden.  


Credit: exdez/iStock.com

Credit: exdez/iStock.com


Wichtige Fragen, die während der Lindauer Nobelpreisträgertagung immer wieder gestellt wurden, sind die, wie die Zukunft der Forschung aussehen kann und wird und, wie man den status quo verbessern kann. Neben den bereits vielfach angesprochenen politischen Ereignissen und Einflüssen auf die Wissenschaft, ist ein weiteres großes Thema eher ein intrinsisches Problem: die Publikationsmaschinerie und die Bedeutung des Impact Factors. Kurz vor der Tagung haben sich etliche Nobelpreisträger bereits öffentlich gegen diese Methode des Journal-Rankings ausgesprochen. Und während der 67. Lindauer Tagung sprach sich auch Martin Chalfie dafür aus, wissenschaftliche Publikationen wieder mehr auf Grund ihrer tatsächlichen Qualität zu beurteilen, und weniger danach, in welchem Journal sie letztlich publiziert werden. Ich fragte ihn, was er sich denn als Alternative vorstelle, und welche Schritte er womöglich selbst schon unternommen habe. Seine Lösung lautete: ASAPbio.org – Accelerating Science and Publication in Biology.

ASAPbio ist eine Interessengemeinschaft gegründet von Ron Vale – einer Initiative von Wissenschaftlern für Wissenschaftler, um neue Erkenntnisse in den biologischen Wissenschaften einem breiteren Publikum schneller zugänglich zu machen. Gemeinsam mit Harold Varmus, Daniel Colón-Ramos und Jessica Polka, inzwischen Direktorin der Initiative, rief Chalfie die Plattform Anfang 2016 ins Leben. „Wir wollten ein Preprint-Archiv für die biologische Forschung entwickeln – in der Physik gibt es so etwas schon seit mindestens 25 Jahren.“ Sobald Forscher also bereit sind, ihre Arbeit und Ergebnisse der Welt mitzuteilen, so Chalfie weiter, können sie ihren Artikel auf einer Preprint-Plattform hochladen, wo er dann von anderen Wissenschaftlern, aber auch von der breiten Öffentlichkeit gelesen und kommentiert werden kann. Die größte biologisch-fokussierte Preprint-Plattform ist bisher bioRxiv. ASAPbio will in Zukunft als eine Sammelstelle für alle Preprints aus den biologischen Wissenschaften fungieren. „Dadurch verändert sich die gesamte Publikationsdynamik“, sagt Chalfie. Denn der konventionelle Publikationsweg sieht anders aus: eine wissenschaftliche Arbeit wird bei einem fachlich passenden Journal eingereicht, dort entscheiden in einem ersten Schritt ein oder mehrere Editoren, ob die Arbeit überhaupt zu dem Journal passt. Falls sich die Editoren dafür entscheiden, wird es an ein paar wenige Experten aus dem Fachgebiet weiter geleitet. Diese machen sich dann ebenfalls ein Bild von der Arbeit, und können sie gegebenenfalls als nicht-ausreichend ablehnen, oder zusätzliche Experimente verlangen. In einem solchen Fall haben die Autoren dann einige Monate Zeit um die gewünschten Änderungen zu erbringen, bevor es zu einer endgültigen Entscheidung kommt – die auch nach den Änderungen noch ein „Nein“ sein kann. Alles in Allem kann so ein Entscheidungsprozess mehrere Monate oder gar bis zu einem Jahr dauern – und wird die Arbeit am Ende tatsächlich abgelehnt, müssen die Forscher diese von Neuem bei einem anderen Journal einreichen. Dadurch verlieren nicht nur sie wertvolle Zeit, sondern auch die Forschungsgemeinschaft sowie die breite Öffentlichkeit, die während dem Entscheidungsprozess keinen Zugriff auf die neuen Erkenntnisse haben. „Preprint-Archive hingegen machen neue Erkenntnisse und Forschungsfortschritte sofort zugänglich für alle – egal ob Wissenschaftler oder Schüler, und ohne dass dafür gezahlt werden muss“, fasst Chalfie die Vorteile zusammen.

Zudem bekommt jede Arbeit automatisch bei der Einstellung ein festes Erstellungsdatum, auf das sich die Autoren berufen können, sollte zeitnah eine ähnliche Arbeit veröffentlicht werden.

Chalfie betont aber: „Es geht hier nicht darum, frühzeitig die eigenen Rohdaten zu veröffentlichen.“ Vielmehr sollte die Arbeit praktisch zeitgleich mit der ersten Journaleinreichung auf eine Archiv-Plattform gestellt werden, und dann entsprechend des Journal-Feedbacks oder der Kommentare, die über die Plattform eingereicht werden, sukzessive überarbeitet werden.


Martin Chalfie talking to young scientists during the 67th Lindau Nobel Laureate Meeting,  Photo/Credit: Julia Nimke/Lindau Nobel Laureate Meeting

Martin Chalfie mit Nachwuchswissenschaftlern während der 67. Lindauer Tagung, Photo/Credit: Julia Nimke/Lindau Nobel Laureate Meeting


„Bereits bei einem der ersten organisatorischen Treffen sprachen wir auch darüber, wie wohl die etablierten Journals auf die Plattformen und die zentrale Sammelstelle reagieren würden. Glücklicherweise haben sich die großen Journals wie Science, Nature oder die Professional Society Journals, aber auch viele andere, allesamt für Preprint-Archive ausgesprochen“, erklärt Chalfie. Die Journals haben also kein Problem damit, wenn die Autoren ihre Arbeit gleichzeitig bei ihnen einreichen und auf einer Plattform zugänglich machen – viele ermöglichen inzwischen sogar „Joint Submissions“: Die Journals fragen bei der Einreichung einer Studie mittlerweile, ob die Autoren die Arbeit auch gleichzeitig auf einem Archiv-Server zugänglich machen möchten.

Ein weiteres Zeichen, dass dieses neue Vorveröffentlichungssystem sich auf lange Sicht etablieren wird, ist die Aufnahme solch pre-archivierter Arbeiten als Kriterium für Beförderungen, die Vergabe von Projektgeldern und ähnlicher Auswahlverfahren. Stolz berichtet Chalfie: „Das Howard Hughes Medical Institute, die NIH, Wellcome Trust und viele Universitäten beziehen Arbeiten aus Preprint-Archiven bereits in ihre Bewertungen von Bewerbern mit ein.“

Obwohl die Preprint-Archive für die biologische Forschung im Gegensatz zur Physik noch in den Kinderschuhen stecken und von vielen Wissenschaftlern erst noch entdeckt werden müssen, ist das Konzept dennoch bereits bei großen Forschungsinstituten und renommierten Journals angekommen und wird akzeptiert. Die Initiative von ASAPBio bietet somit eine ausgezeichnete Möglichkeit, die festgefahrene Publikationssituation in den Lebenswissenschaften in eine neue Richtung zu lenken und die tatsächliche Qualität der Forschungsarbeit anstelle eines Impact Factors wieder in den Vordergrund zu stellen.

#LiNo17 Daily Recap – Monday, 26 June 2017

Yesterday, the scientific programme of the 67th Lindau Nobel Laureate Meeting commenced. It was a fantastic day full of science and exchange – this short recap can only give you a glimpse of everything that happened, but for us the following are our personal highlights!


Video of the day:

The first of today´s many inspirational lectures was the one given by Bernard L. Feringa, 2016 Nobel Laureate in Chemistry. He took the young scientist on a journey into the world of molecular switches and motors, the process of discovery and his personal experiences through his scientific career. In particular, he addressed how fundamental questions and molecular beauty have guided him on this journey.


Picture of the day:

Nobel Laureate Martin Chalfie enjoys interacting with young scientists.

67th Lindau Nobel Laureate Meeting Chemistry, 25.06.2017 - 30.06.2017, Lindau, Germany, Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings,  Young Scientists in talk with Martin Chalfie



For even more pictures from the Lindau Nobel Laureate Meetings, past and present, take a look at our Flickr account.


Blog post of the day:

Mexico hosted the International Day on Monday. A good reason for us to feature a young scientist from Mexico, Ana Torres, who said: “I urge each woman […] to play an active role in our nation.”

Do take a look at more exciting blog posts.


Tweets of the day:


Last but not least, follow us on Twitter @lindaunobel and Instagram @lindaunobel and keep an eye out for #LiNo17


Over the course of the next five days, we will keep you updated on the 67th Lindau Nobel Laureate Meeting with our daily recaps. The idea behind it is to bring to you the day’s highlights in a blink of an eye. The daily recaps will feature blog posts, photos and videos from the mediatheque.

“Wir sind nur wegen Euch hier” – Martin Chalfie

Der erste volle Programmtag der Lindauer Nobelpreisträgertagung startet mit blauem Himmel, Nanorobotern von übermorgen, und der Frage nach der richtigen Kommunikation untereinander und mit der Öffentlichkeit.

Nach dem großen Sommerfest einschließlich Feuerwerk am Samstagabend, und der feierlichen Eröffnung mit Reden von Bundesforschungsministerin Johanna Wanka, Bettina Gräfin Bernadotte und Steven Chu – gehalten von William Moerner – am Sonntagnachmittag, begann am Montag das reguläre Programm der Lindauer-Nobelpreisträger-Woche. Bereits während dem gesamten Wochenende vibrierten die verwobenen und verwunschenen Gassen der malerischen Lindauer Altstadt mit Vorfreude und Leidenschaft für die Wissenschaft – sowohl von Seiten der Preisträger, als auch der talentierten und speziell ausgewählten 420 Nachwuchsforscher: aus allen Cafes und Restaurants konnte man Unterhaltungsfetzen über die Wissenschaft in den verschiedensten Sprachen aufschnappen.

Ben Feringa am 26. Juni 2017 in Lindau während seines Vortrags 'The Joy of Discovery'. Foto: Julia Nimke/Lindau Nobel Laureate Meetings Lecture Bernard Feringa

Ben Feringa am 26. Juni 2017 in Lindau während seines Vortrags ‘The Joy of Discovery’. Foto: Julia Nimke/Lindau Nobel Laureate Meetings

Den ersten Vortrag am Montagmorgen dann hielt Bernard L. Feringa, Nobelpreisträger aus dem letzten Jahr (2016) für seine Entwicklung molekularer Motoren. Über deren Entstehungsgeschichte berichtete er auch voller Begeisterung; doch noch viel mehr als der enorme Erkenntnissgewinn seiner Forschung, stand die Freude an seiner Arbeit im Mittelpunkt seines Vortrages – passenderweise betitelt „Die Freude der Entdeckung“. Und genau die vermittelte er auch dem internationalen Publikum. Und trotz seines hochkomplexen Forschungsgebietes von lichtreaktiven Molekülen, die ihre Konformation ändern und dadurch als Mini-Motoren eingesetzt werden können, sprang der Funke sofort über. Aber vermutlich war der wichtigste Rat, den er den gebannten Nachwuchswissenschaftlern mit auf den Weg gab: „Findet Euer Gleichgewicht, seid Euch im Klaren womit Eure Neugier gespeist wird, und woraus ihr Eure Energie beziehen könnt.“ Denn, so Feringa, zu jedem produktiven Forscherleben gehöre auch ein Freizeitausgleich, sei es das Mitfiebern bei wichtigen Fußballspielen oder Schlittschuhlaufen im Winter. Erst durch diesen für die Forscher so wichtigen Ausgleich, hätten sie überhaupt erst die mentalen Kapazitäten, um beispielsweise Nanoroboter schon bald Wirklichkeit werden zu lassen. Ein Nobelpreisträger, der für Work-Life Balance wirbt – sicherlich eine der hervorragenden Besonderheiten der Lindauer Nobelpreisträgertagung.

Martin Chalfie in seiner Lecture, 67. Nobelpreisträgertagung (Chemie), Foto: Julia Nimke/Lindau Nobel Laureate Meetings

Martin Chalfie während seines Vortags auf der 67. Lindauer Nobelpreisträgertagung (Chemie), Foto: Julia Nimke/Lindau Nobel Laureate Meetings

Und auch der nächste Vortrag von Martin Chalfie griff die besondere Stimmung der Lindau-Woche auf und forderte die Teilnehmer heraus, den Nobelpreisträgern möglichst viele und komplizierte Fragen zu stellen – schließlich seien diese alle wegen der Nachwuchswissenschaftler hier. Aber Chalfie lag zusätzlich zu seiner Forschung und der persönlichen Interaktion mit dem Publikum noch ein weiteres und sehr aktuelles Thema am Herzen: die Publikationen und das Publikationssystem. In Forschung und Wissenschaft gibt es kaum ein mehr diskutiert und debattiertes Thema – erst letzte Woche veröffentlichte die Nobel Foundation ein Video, in dem sie sich gegen den Hype um den Impactfator der Journals aussprach, und eine Rückbesinnung auf die tatsächliche Qualität der Forschung forderte.

Die Frage der „richtigen“ Kommunikation zwischen Wissenschaftlern untereinander, aber auch verstärkt zwischen Wissenschaftlern und der Öffentlichkeit wurde am Nachmittag auch noch einmal im „Press Talk“ angesprochen. Organisiert von Deutsche Welle und moderiert von Zulfikar Abbany, diskutierten Nobelpreisträger William E. Moerner, Vizepräsdentin des Kuratoriums der Tagungen der Nobelpreisträger in Lindau, Helga Nowotny, Vertreter der Mexikanischen Gastgeber Arturo Borja, und die Nachwuchswissenschaftlerinnen Marian Nkansah und Melania Zauri darüber, wie und was „alternativen Fakten“ entgegengesetzt werden kann. „Wir sind selbst für unsere Welt und unsere Umwelt verantwortlich“, so beginnt Zulfikar. Und auch wenn hier noch alle Teilnehmer und Zuhörer zustimmen, offenbaren sich doch bald große Diskrepanzen in dem kleinen Raum. Während Moerner und Nowotny tiefstes Vertrauen in die „Scientific Method“ pflegen, und das auch von Politikern und der Öffentlichkeit fordern, wünschen sich die anwesenden Journalisten etwas mehr Mut und Wut, wenn es darum geht „alternative Fakten“ in ihre Schranken zu weisen. Zurück bleibt die Gewissheit, dass mehr und besser kommuniziert werden muss – zwischen Wissenschaftlern, sei es Nachwuchs oder etabliert; zwischen Wissenschaftlern und Journalisten, und zwischen Journalisten und der Öffentlichkeit. Und alle Parteien tragen die große Verantwortung der faktenbasierten Wahrheit.

Yolanda Salinas presenting her research at the Poster Flashes, 67th Lindau Nobel Laureate Meeting (Chemistry), 25.06.2017 - 30.06.2017, Lindau, Germany, Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings

Yolanda Salinas präsentiert ihre Forschung bei den Poster Flashes, 67. Lindauer Nobelpreisträgertagung (Chemie), Foto: Christian Flemming/Lindau Nobel Laureate Meetings

Der letzte offizielle Programmpunkt des ersten Tages der 67. Lindauer Nobelpreisträgertagung sind Poster-Blitz-Vorträge der Nachwuchswissenschaftler. Ausgewählte Teilnehmer haben zwei Minuten Zeit, ihre neuesten Ergebnisse einem gemischten Publikum aus demselben Fachgebiet oder naheliegenden Forschungsgebieten zu präsentieren und qualifizierte Rückmeldungen zu erhalten. Der sogenannte „Elevator-pitch“ mit dem ein komplexes Projekt innerhalb weniger Minuten einem breiten Publikum vorgestellt wird, ist eine ausgezeichnete Übung für die Wissenschaftskommunikation – vielleicht lernen die jungen Wissenschaftler gerade nicht nur, wie sie die Roboter der Zukunft herstellen können, sondern auch, wie sie die neue Technik einem breiten Publikum schmackhaft machen können.

Früh übt sich, wer sich seine Zukunft selber bauen will – und heute war ja erst Tag 1.

How to Tickle Worms

Sometimes you get what you want, even in science. But everything comes at a price. In case of Martin Chalfie, he wanted to use some of his wife’s unpublished research results for his upcoming Science paper. His wife, Columbia professor Tulle Hazelrigg, agreed but made a humorous list of three things her husband had to do in return: “1. You make coffee each Saturday morning for the next two months, ready by 08:30 a.m. 2. You prepare a special french dinner at a time of your choosing. 3. You empty the garbage nightly for the next month.” Chalfie showed this list in his Nobel lecture (slide no. 17).

We don’t know how well Martin Chalfie met these requirements, but we do know that he was allowed to use his wife’s findings for his 1994 article “Green fluorescent protein as a marker for gene expression”, which is among the 20 most-cited papers in the field of molecular biology and genetics. In 2008, Martin Chalfie, together with Osamu Shimomura and Roger Y. Tsien, were awarded the Nobel Prize in Chemistry for their discovery and development of GFP. Today, GFP is used as a reporter gene, it tells scientists if a specific gene has been expressed, as a biosensor and biomarker. Its advent has also helped super-resolution microscopy considerably.


Martin Chalfie (right) with the photographer Volker Steger at the 2013 Lindau Nobel Laureate Meeting at Steger's exhibition

Martin Chalfie (right) with the photographer Volker Steger at the 63rd Lindau Nobel Laureate Meeting, at Steger’s 2013 exhibition “Sketches of Science”. Photo: Ch. Flemming/LNLM

It was inspiring to hear Martin Chalfie’s lecture at this year’s Lindau Nobel Laureate Meeting (see screen window below). He talked about his favorite model organism C. elegans, but not about GFPs. In recent years, Chalfie and his research group have been studying the animal’s sense of touch. They already came up with over 500 mutations in the 17 genes that make the six neurons that constitute the animal’s sense of touch. “You might ask yourself,” Chalfie said with a smile, “what sophisticated instrument we use to sense touch in a one millimeter animal?” Well, it’s a toothpick with a glued-on eyebrow hair, because these hairs usually are uncut and thus have tapered endings. An eyelash would work as well, but tearing out an eyelash can be painful (for the human, not the worm). Working with touch-insensitive mutants, Chalfie’s group has discovered that five of these 17 genes are responsible for cell development, twelve for cell function.

One example: the two genes MEC-4 and MEC-10 are responsible for the formation of a membrane channel that opens when mechanically stimulated – at this moment, the cell is able to sense “touch”. With the help of this channel, the mechanical stimulus is transformed into electro-chemical activity. This is how a functioning neural circuitry works to provide a sense of touch.


Martin Chalfie with young scientists at the 2015 Lindau Nobel Laureate Meeting. Photo: Ch. Flemming/LNLM

Martin Chalfie with young scientists at the 65th Lindau Nobel Laureate Meeting, 2015. Photo: Ch. Flemming/LNLM

However, a scientist’s mind never rests. Studying the formation of senses is one thing, but all senses can be modified. “When you go from a dark room to a bright room – your eyes adapt,” Chalfie explains in his Lindau lecture. Next he surprised everybody present by saying: “All of you, until I say the word, will NOT be feeling your clothes that you’re wearing, because you’ve habituated to them. But once I say that, you start to squirm and of course you feel that you are wearing clothes – and you’re relieved.” Laughter erupts. “This is called habituation reversal.” Honestly, I never saw so many people in one room trying desperately NOT to squirm.

But how does this sense modification work on a molecular basis? In the past Martin Chalfie had a “brilliant idea”: they had worked with many touch-insensitive mutants, but never found super-sensitive ones. To find those, he bought many car loudspeakers to expose the worms in petri dishes to constant low vibrations, trying to determine their sensitivity threshold. The result: “It did not work at all.” Now all these loudspeakers were sitting around in the lab… One PhD student, Xiaoyin Chen, decided to use them for something else entirely: he exposed the worms for hours to a loud 50 Hertz buzz. (Don’t try this at home.) At first, Chen found the worms to habituate. After a while though, the habituation was reversed, the animals got sensitive to the sound again – but only in the front.


C. elegans adult with GFP coding sequence inserted into a histone-encoding gene. Photo: Dan Dickinson, Goldstein lab, UNC Chapel Hill, CCL 3.0

An adult C. elegans with GFP coding sequence inserted into a histone-encoding gene. The entire animal is about one millimeter long. Photo: Dan Dickinson, Goldstein lab, UNC Chapel Hill, Creative Commons License 3.0

If a petri dish with healthy worms is tapped mechanically, they always move backwards, it’s their natural escape reflex (if their frontal neural circuitry is downgraded, they go forwards). Since C. elegans will probably never meet so many car loudspeakers in the wild, why do these animals exhibit such complicated patterns? The only repetitive sound they might hear over hours in the wild is rain, and “the big predator of these worms is a fungus with a lasso that clamps on them. So after a rainstorm, a protective mechanism would be: be really sensitive and get yourself out of this,” Chalfie explained. Chen also worked out the molecular mechanisms behind this pattern and found that different insulins play a crucial role in the habituation mechanism.

Chalfie concludes: “The nervous system that we thought we knew actually works through all these hormone systems. I call this the shadow nervous system.” It’s great fun to hear Martin Chalfie talk. Obviously, he is fascinated by his work and the many mysteries he couldn’t solve yet: “What is this shadow nervous system? How does it map on to the circuitry we know, from the neurons, the chemicals and electrical synapses? Are there other types of modulation?” And, “how is habituation maintained and rapidly reversed? Do you remember when I said ‘clothes’, how quickly you felt that you had clothes on?” So apparently, habituation can be reversed instantly. That leads us to the ultimate question: “How does the sense of touch work in humans?”

At the end of his lecture, Chalfie points out possible future applications of this research. First he explains how the first symptoms of type II diabetes are often numbness in fingers and toes, diabetic neuropathy being the no. 1 cause for amputations worldwide. Knowing that touch habituation is modulated via insulins may be of help to treat these patients in the future.


Martin Chalfie is a regular participant of the Lindau Nobel Laureate Meetings, he attended five times and gave a lecture at each of these meetings. Read his essay on mulitdisciplinarity for the 65th Lindau Meeting; you can also visit his “Nobel Lab 360°” here.

Würmer kitzeln leicht gemacht

Manchmal bekommt man, was man will, sogar in der Wissenschaft. Doch alles hat seinen Preis. Martin Chalfie wollte unveröffentlichte Ergebnisse seiner Ehefrau Tulle Hazelrigg für eine Publikation in Science verwenden, höflich fragte er sie um Erlaubnis. Die humorige Antwort kam schriftlich: Ja, er dürfe ihre Ergebnisse verwenden, aber es gäbe da drei Bedingungen: „Zwei Monate lang jeden Samstagmorgen Kaffeekochen, und zwar vor 8:30 Uhr; einen Monat jeden Abend den Müll hinunter tragen; sowie die Zubereitung eines französischen Dinners.“ Chalfie zeigte diesen Brief in seinem Nobelpreis-Vortrag (Folie Nr. 17).

Zwar wissen wir nicht, wie gewissenhaft Chalfie diese Bedingungen erfüllt hat, sicher ist jedoch, dass er die Ergebnisse seiner Frau, die wie er eine Professur an der Columbia University hat, für seinen Artikel verwenden durfte. Dieser erschien im Jahr 1994 unter dem Titel „Green fluorescent protein as a marker for gene expression” und gehört zu den zwanzig meistzitierten Texten in den Fächern Molekularbiologie und Genetik. 14 Jahre später bekam Martin Chalfie den Nobelpreis für Chemie für die Entdeckung und Entwicklung der grün fluoreszierenden Proteine, kurz GFP, zusammen mit Osamu Shimomura und Robert Y. Tsien. Heute werden GFP großflächig als Reportergene eingesetzt, sie zeigen Wissenschaftlern also an, ob eine bestimmte Genexpression stattgefunden hat, Verwendung finden sie auch als Biosensoren und Biomarker. Sie haben zudem die hochauflösende Mikroskopie revolutioniert.

Martin Chalfie (rechts) mit Volker Steger, dem Fotograf der Ausstellung

Martin Chalfie (rechts) mit Volker Steger, dem Fotograf der Ausstellung “Sketches of Science”, vor dem Portrait von Chalfie im Jahr 2013. Foto: Ch. Flemming/LNLM

Es ist inspirierend, Martin Chalfie zuzuhören, weil er von seiner eigenen Forschung begeistert ist, auch wieder bei der Nobelpreisträgertagung 2015 in Lindau. Er sprach zwar über seinen Lieblings-Modellorganismus, den Fadenwurm C. elegans, aber nicht in Zusammenhang mit GFP. In den vergangenen Jahren haben sich Chalfie und sein Team den Tastsinn des Würmchens vorgenommen. Sie haben zunächst Würmer untersucht, deren Tastsinn mutiert ist. So fanden sie mit der Zeit über 500 mögliche Mutationen an den 17 Genen, die zusammen die sechs unterschiedlichen Neuronen bilden, die wiederum den Tastsinn von C. elegans ausmachen.

Schmunzelnd fährt Chalfie fort: „Sie fragen sich jetzt bestimmt, mit welch hochentwickeltem Instrument man den Tastsinn bei Würmern untersucht, die nur einen Millimeter lang sind.“ Tja, dieses Instrument ist ein gewöhnlicher Zahnstocher, an dessen Spitze ein Augenbrauenhaar klebt. Diese Haare eignen sich besonders gut, weil sie meist ungeschnitten sind und sich deshalb gleichmäßig verjüngen. Man könnte auch eine menschliche Wimper benutzen, aber das Ausreißen von Wimpern ist laut Chalfie meist zu schmerzhaft (für den Menschen, nicht den Wurm). Chalfies Team fand heraus, dass fünf dieser 17 Gene für die Entwicklung der Neuronen zuständig sind, zwölf kümmern sich um das einwandfreie Funktionieren dieser Zellen.

Ein Beispiel: Die beiden Gene MEC-4 und MEC-10 bilden zusammen den Membrankanal, der sich öffnet, wenn die Zelle berührt wird – so funktioniert der Tastsinn auf molekularer Ebene. Der mechanische Stimulus der Berührung wird an diesem Kanal also in elektrochemische Aktivität umgewandelt, und in dieser Form kann ein funktionierendes Nervensystem die Information „Berührung“ weiterleiten.

Martin Chalfie mit Nachwuchsforschern bei einer Abendveranstaltung auf dem 65. Lindauer Nobelpreisträgertreffen 2015. Foto: Ch. Flemming/LNLM

Martin Chalfie mit Nachwuchsforschern bei einer Abendveranstaltung auf der 65. Lindauer Nobelpreisträgertagung 2015. Foto: Ch. Flemming/LNLM

Ein echter Forscher ruht sich ungern auf seinen Erkenntnissen aus. Zu erforschen, wie der Tastsinn entsteht und funktioniert, ist das eine. Aber jeder weiß, dass man Sinne auch verändern kann. „Wenn Sie von einem dunklen in einen hellen Raum gehen, passen sich Ihre Augen an“, erklärte Chalfie in Lindau. Als nächstes überraschte er die Zuhörer mit folgender Aussage: „Sie alle spüren aktuell Ihre Kleidung nicht, bis ich das Wort Kleidung sage, weil sie daran gewöhnt sind. Aber sobald ich das Zauberwort sage, werden Sie anfangen, in Ihrer Kleidung zu zappeln, werden diese spüren – und erleichtert sein, dass Sie etwas anhaben.“ Die Zuhörer lachen. „Das nennt man die Umkehr des Gewöhnungseffekts.“ Und ich muss sagen, dass ich noch nie so viele Menschen in einem Raum gesehen habe, die angestrengt versuchten, nicht zu zappeln.

Aber wie funktioniert diese Veränderung der Sinne auf molekularer Ebene? Martin Chalfie hatte eine „brillante Idee“, er wollte Würmer mit Mutationen finden, die diese hochsensibel für mechanische Reize machen. Also kaufte er Autolautsprecher und setzte die Petrischalen einer leichten Vibration aus: Er wollte so die Wahrnehmungsschwelle der Würmchen finden. „Das hat überhaupt nicht funktioniert!“, gibt er lachend zu. Nun standen die ganzen Lautsprecher im Labor herum. Ein Doktorand, Xiaoyin Chen, hatte eine andere Idee. Er beschallte die Petrischalen über Stunden mit lauten Bässen. (Achtung, das macht Sie bei Ihren Kollegen unbeliebt!) Zunächst gewöhnten sich die Tierchen an den Lärm, nach einer Weile wurden Sie jedoch wieder empfindlicher, allerdings nur vorne am Körper.

Ein ausgewachsener Fadenwurm C. elegans mit einem grün fluoreszierenden Protein in seinen Genen. Das ausgewachsene Tier hat ungefähr 1 Millimeter Länge. Foto: Dan Dickinson, Goldstein lab, UNC Chapel Hill, Creative Commons License 3.0

Ein ausgewachsener Fadenwurm C. elegans mit einem grün fluoreszierenden Protein in seinen Körperzellen. Das ausgewachsene Tier hat ungefähr 1 Millimeter Länge. Foto: Dan Dickinson, Goldstein lab, UNC Chapel Hill, Creative Commons License 3.0

Wenn man per Hand an eine Petrischale klopft, kriechen gesunde Würmchen rückwärts, wenn allerdings die vordere Sensitivität reduziert ist, kriechen sie nach vorne. Da es kaum wahrscheinlich ist, dass C. elegans in freier Wildbahn stundenlang mit Autolautsprechern traktiert werden, muss man sich fragen: Warum zeigt ihre Reaktion ein so kompliziertes Muster? Nach einigem Nachdenken kamen die Forscher darauf, dass das einzige rhythmische Beben in der Natur, das die Würmer stundenlang fühlen, ausgiebige Regenfälle sind. „Der wichtigste natürliche Feind der Würmer ist nun ein Pilz, der sie mit einer Art Lasso einfängt und festhält. Nach einem Regen heißt die Devise also: Seid extrem wachsam und kriecht bitteschön rückwärts!“, erklärt Chalfie. Chen hat darüber hinaus die molekularen Mechanismen der Gewöhnung entschlüsselt, und siehe da: verschiedene Insuline spielen hier eine entscheidende Rolle.

Chalfie fasst diese Ergebnisse zusammen: „Wir dachten, dass wir das Nervensystem ziemlich gut kennen. Und plötzlich stellten wir fest, dass es durch diese verschiedenen hormonellen Systeme reguliert wird. Ich nenne es das Schatten-Nervensystem.“ Chalfie ist offensichtlich von seinem Forschungsgegenstand fasziniert, geradezu elektrisiert, ebenso von den vielen offen Fragen: „Was ist dieses Schatten-Nervensystem genau? Wie funktioniert das Zusammenspiel mit dem bekannten Nervensystem, also mit den Neuronen, Synapsen und so weiter? Und gibt es noch weitere Veränderungs-Mechanismen?“ Ferner treibt ihn die Frage um: „Wie wird Gewöhnung erreicht und plötzlich wieder aufgehoben? Erinnern Sie sich, wie ich ‘Kleidung’ sagte – wie Sie sofort wussten, dass sie Kleidung tragen?“ Eine Gewöhnung kann also blitzschnell aufgehoben werden. Das bringt uns schließlich zur wichtigsten Frage: „Wie genau funktioniert der Tastsinn beim Menschen?“

Am Ende seines Vortrags deutet Chalfie eine denkbare praktische Anwendung seiner aktuellen Forschung an. Er erklärt, dass die allerersten Symptome einer Typ-II Diabetes-Erkrankung häufig Taubheitsgefühle in Fingern und Zehen sind, und diese sogenannte diabetische Neuropathie ist wiederum weltweit die häufigste Ursache für Amputationen. Die Erkenntnis, dass Insuline eine entscheidende Rolle für einen funktionierenden Tastsinn spielen, könnte die Behandlung dieser Patienten in Zukunft revolutionieren.

Martin Chalfie ist ein regelmäßiger und gern gesehener Besucher in Lindau. Er nahm schon an fünf Nobelpreisträgertagungen teil und hielt jeweils einen Vortrag. Lesen Sie auch seinen Essay für das 65. Meeting 2015 über “Multidisziplinarität”. Hier geht es zu seinem virtuellen “Nobel Lab 360°”.

The Courage to Venture Beyond: Of Polymaths and Multidisciplinarians

Correspondence to:

Jalees Rehman

Department of Medicine and Department of Pharmacology

University of Illinois at Chicago

Email: jalees.rehman[at]gmail[dot]com



Goethe’s symmetric colour wheel with associated symbolic qualities (1809): – Public Domain Image


“Focus! Focus! Focus! Create a narrow area of scientific expertise in which you excel and develop a national or international reputation for excellence!”

Established scientists often share this sort of advice with their younger peers who are about to embark on their academic career. It isn’t a bad advice and I have known many scientists who have succeeded in academia by following it. Every day, more than a thousand original scientific papers are published. A major aspect of scientific research is placing your own findings into context of already existing knowledge. How is your work different from what is already known? What impact will your work have in your scientific field? Have you developed a new tool or concept that will be of significant value to your peers? To engage in cutting-edge research therefore requires that one stays abreast of the amassing scientific literature, carefully curating which of the numerous published findings are most relevant to one’s own work.

A scientist with too broad of an area of scientific expertise or too many distinct scientific interests may drown in the ocean of newly generated knowledge. Keeping up with the scientific literature and actively conducting experiments in multiple scientific disciplines may  take up so much effort that it leaves little time and resources to dig deeply and unearth high-impact knowledge in any one area.

Some scientists devote decades of research to studying a single protein in a cell. Considering the complexity of biological phenomena, a single protein X can supply a seemingly inexhaustible reservoir of research questions. How is the synthesis of the protein regulated? Which molecular pathways lead to the degradation of the protein? Which are the proteins that interact with X? Are there specific environmental signals which control the expression of the gene which is transcribed and translated into protein X? How does a transgenic mouse behave when protein X levels are over-expressed in selected organs or tissues? Answering each one of these questions by carefully interrogating all the detailed molecular mechanisms involved can take several years. A scientist who uses her creativity and perseverance in order to develop unique molecular tools and animal models to address these questions will likely receive national or international recognition and a steady stream of research funding for her expertise in all matters relating to protein X.

Yet there are a number of scientists who forsake this traditional path. Such a scientist may start out studying protein X in a cell but after discovering that biomechanical forces regulate the levels of protein X, shift the focus of her research to cellular biomechanics. Her work on biomechanics may then lead to the engineering of novel devices and tools to control biomechanical forces, to pursue broader questions regarding how cells sense mechanical forces and even address philosophical questions about the validity of applying physical concepts of force and tension to biological systems. Protein X may have been the initial trigger for the research but as her research progresses, her interests become broader and integrate various disciplines ranging from molecular biology to engineering and biophysics and protein X may just become a distant memory. Such a multidisciplinary path comes with a greater risk of failure because the scientist will not have any circumscribed area of expertise on which to build an academic reputation and because every transition from one discipline to another requires that the scholar devote an extraordinary amount of effort to acquiring skills and knowledge in the new discipline. But the potential for ground-breaking discoveries is also greater because the scholar’s checkered background and intellectual diversity could lead to a cross-fertilization of ideas from various disciplines and create a whole new area of research.

Polymaths and Multidisciplinarians

According to the Oxford English Dictionary, the expression “polymath” refers to “a person of great or varied learning; a person acquainted with many fields of study; an accomplished scholar”. This is a rather broad definition which does not give any specific guidelines as to what qualifies as being “acquainted with many fields of study”. Does one need formal academic training in multiple areas of study to be considered a polymath? Is it a requirement to make original and creative contributions to a multiple disciplines? Perhaps even garner national and international recognition?

When prompted to name individuals who are polymaths, people educated in the European tradition often associate “polymaths with the Renaissance because that era symbolizes the integration of the arts, humanities and sciences and has led to “Renaissance man” being used as a synonym for polymath. Leonardo da Vinci (1452-1519) is a prime example of such a polymath, known not only for his paintings such as The Last Supper and the Mona Lisa, but also his numerous inventions and innovative designs of flying machines as well as his extensive anatomical studies based on the dissection of human corpses.


Studies of the Embryo by Leonardo da Vinci: Photography by Luc Viatour via Wikimedia Commons

Studies of the Embryo by Leonardo da Vinci: Photography by Luc Viatour via Wikimedia Commons

The German poet Johann Wolfgang von Goethe (1749-1832) is also a front-runner in the pantheon of polymaths because of his interests in geology, paleontology and optics. During his lifetime, Goethe assembled one of the largest collections of rocks, minerals and fossils ever owned by an individual person, consisting of 18,000 specimens! Even though he is revered as the greatest poet of the German language, Goethe’s longest published work is his treatise on a theory of color, the Farbenlehre. He devoted two decades of his life to studying light and he thought that this 1000-page tome would be his most meaningful contribution to humankind.
In the Farbenlehre, Goethe vehemently disagreed with Newton about the nature of light. According to Newton, white light was a heterogeneous composite of colors and darkness was the absence of light. Goethe, on the other hand, felt that white light was a homogenous entity and that darkness was the polar opposite of light and not just its absence. Goethe also ascribed aesthetic qualities to specific colors such as “beautiful” to red and “useful” to green.

Goethe’s theory of color is not a scientific theory in the conventional sense because it did not offer any clear scientific hypotheses that could be tested and falsified by experiments. This did not prevent Goethe from viciously attacking Newton and those who accepted the Newtonian theory of light and color. In fact a whole portion of Goethe’s Farbenlehre is titled “Polemics” and attempts to document the incompetence and errors of Newton. Some of Goethe’s attacks are so embarrassing that many editions and translations of the Farbenlehre completely omit this portion. After it was published, the Farbenlehre did not gain much traction with scientists in the 19th century because Newton had made a far more compelling case for describing the physical nature of light. However, in recent decades, the Farbenlehre has experienced somewhat of a revival in the academic world. Recent works such as “Goethe’s Way of Science” and “Goethe Contra Newton”, authored by philosophers, physicists and other scholars, have pointed out that Goethe‘s approach to color and light was rooted in his background as a poet. He was not studying light in its physical form but the perception of light, and the Farbenlehre even contains extensive passages about the nature of scientific paradigms. His work is now experiencing a renaissance, if you will, as it is being re-evaluated by psychologists, cognitive scientists and philosophers of science.

Goethe and da Vinci are excellent examples of the creative synergy that arises when individuals are actively engaged in multiple disciplines. By approaching light and color from the perspective of a poet, Goethe stumbled on important scientific questions revolving around the perception of light which were quite distinct from the questions raised by Newton’s work which centered on the physical nature of light. And Goethe’s work as a writer also greatly benefited from his scientific endeavors. It is estimated that Goethe used a vocabulary of roughly 90,000 words in his work, four to five times more than the vocabulary of an average educated German living today and also substantially more than the vocabulary of Shakespeare (estimated at about 30,000 words). It is very likely that Goethe’s extensive readings and work in geology, paleontology, optics as well as his work as a cabinet minister and civil servant greatly enriched his vocabulary and allowed him to tap into words and metaphors that may not have been easily accessible to other poets.


Goethe is called the 'Prince of Poets' in Germany but may his way of interdisciplinarity be a relic of times long gone? Image: motograf (CC BY 2.0)

Goethe is called the ‘Prince of Poets’ in Germany but may his way of interdisciplinarity be a relic of times long gone? Image: motograf (CC BY 2.0)

Are the da Vincis and Goethes anachronisms of the past? Many of us still revere the brilliance of the individual who straddles and demonstrates excellence in multiple disciplines and we continue to recognize the value of new knowledge and creative ideas that are formed when supposedly distinct disciplines converge. But we also need to recognize that the nature of knowledge and disciplines is changing. The painter Leonardo da Vinci was one of the few individuals in Europe who was allowed to dissect human corpses and conduct anatomical studies. If he were to design “flying machines” today, it would be reasonable to expect that he first receive training in aeronautical engineering or at the very least perform a comprehensive review of existing designs and document whether his designs would abide by contemporary standards of efficiency and safety.

Our bar for what is an acceptable scholarly contribution today is very different from what it was five centuries ago. Peer review in its current form may have its flaws but it does prevent individuals from pontificating about scholarly topics based on idiosyncratic standards and whims. If Goethe had spent two decades studying the nature of light today and viewed his work as a scholarly endeavor, we would expect him to regularly present his findings at conferences, publish peer reviewed abstracts and papers, and solicit critical input from other scientists at every stage of his work to test whether it was truly up to par.

Because of the dizzying growth of knowledge and technologies available to the modern scholar, most contemporary scientific research is conducted by individuals who are members of teams, in which each team member has years or even decades of training to achieve the required level of mastery. This shift in the nature of how we generate knowledge in order to accommodate the growing complexity of knowledge also requires that we rethink our veneration of the age-old “polymath”, a person who as an individual achieves recognition and fame in a multitude of disciplines. A more apt term for today’s polymath may be a “multidisciplinarian”, an individual who is actively engaged in multiple scholarly, artistic or creative disciplines either as an individual or as a member of multidisciplinary teams.

Martin Chalfie received the 2008 Nobel Prize in Chemistry for discovering and developing green fluorescent protein and is a great example of a contemporary multidisciplinarian. He sees himself as a neurogeneticist, but routinely collaborates with physicists, engineers, biologists and physicians to study sensors.

“I should emphasize that I have not become an expert in each of these areas.  In fact, one of the terrific consequences of working in several different areas is that I get to learn from and work with other scientists “, he says in a recent essay for the Lindau blog.

Using a newer expression such as multidisciplinarian may also help remove some of the other connotations associated with the polymath. The historical association of polymaths with the Renaissance also links it to an age of patriarchy in which men but not women were considered to be scholars. The expression “Renaissance man” as a synonym for polymath reminds us of this gender bias. When the staff of the British magazines The Economist and Intelligent Life profiled 20 contemporary polymaths, they did not include a single woman on the list. The British law professor and novelist Alexander McCall Smith made the list, whereas the accomplished philosopher, novelist, essayist and professor of creative writing Rebecca Goldstein did not.

Merely switching from the expression “polymath” to “multidisciplinarian” is obviously not going to change existing prejudices or biases but it symbolizes that a contemporary view of multidisciplinarity ought to be more inclusive and take into account a team-based approach to scholarly endeavors than historical concepts which primarily centered on individuals.

The Cornerstones of Multidisciplinarity: Courage and Humility

How do we define multidisciplinarity today? The very nature of multidisciplinarity defies a precise definition, but a key feature of multidisciplinarity is the active engagement in scholarly, artistic or creative endeavors involving multiple disciplines. Active is the key word here. We would probably not consider a molecular biologist who enjoys watching TV documentaries about quantum physics and listens to classical music a multidisciplinarian. A more active engagement would take the form of conducting experiments, presenting papers or performing on stage. Such active engagement also comes with the risk of rejection and failure. This brings us to one of the key characteristics of a multidisciplinarian: courage.

By leaving the beaten path, the multidisciplinarian will invariably find herself in a situation where she is a novice. A physicist who embarks on studies of epigenetic regulation in cells, mathematicians who begin writing poetry or physicians who engineer novel devices not only have to learn a whole new set of skills, they also have to confront doubts that some of their specialist colleagues have regarding their qualifications. More established peers with narrow areas of expertise may reject the ideas of the multidisciplinarian because these are plain naïve, or because they be too far ahead of their time. Physicians who work as basic scientists are often plagued by self-doubt, not knowing whether they can achieve true excellence in medicine and science. The intellectual curiosity and restlessness which triggers the desire to venture beyond the boundaries of one’s primary discipline can only be sustained with a strong measure of courage and at times even over-confidence to overcome the inevitable episodes of disappointment, rejection and failure. On the other, it is equally important that this courage and over-confidence not turn into arrogance. The courage of a multidisciplinarian has to be paired with the humility of recognizing one’s own limitations and seeking appropriate guidance in order to overcome these limitations.  The lack of introspection and humility in Goethe’s polemics against Newton make it very difficult to see Goethe as a role model for multidisciplinarians.

The physicist Steven Chu is a multidisciplinarian who epitomizes both courage and humility. He received the Nobel Prize for Physics in 1997 for developing methods to cool and trap atoms with laser light, but the breadth of his research interests are astonishing. Chu has introduced methods to visualize and manipulate single biomolecules, measure the force on actin filaments inside a cell and the mechanisms of how ribosomes “proofread” to ensure the accuracy of translated proteins, all in collaboration with biologists and physiologist from all around the world. One of the most remarkable demonstrations of his courage to take on new challenges was his acceptance of the post to become the U.S. Secretary of Energy in 2009. During his tenure as the head of the Department of Energy, there was a doubling of renewable energy deployment in the U.S. and solar energy deployment even increased 10-fold.

Despite these extraordinary successes in so many disciplines, he retains a core sense of humility and says “I have been a scattered dilettante for my entire life”.

Encouraging Multidisciplinarity in a Scientific Laboratory

As appealing as the idea of multidisciplinarity may sound, implementing it in a contemporary scientific environment can be challenging. It takes years of meticulously designed experiments to address specific scientific questions. How can one afford to vacillate between scientific disciplines, arts and humanities and still end up with tangible, defined scientific results?

Eric Betzig is a physicist who received the 2014 Nobel Prize in Chemistry for his ground-breaking work on super-resolution microscopy which has allowed biologists to study the interactions of individual protein molecules inside a cell. Betzig clarifies that multidisciplinary scientific work does not mean giving up focus. Instead, periods of intense focus alternate with periods of searching for inspiration from other disciplines.

“In my personal experience, it has been valuable at certain times of my life to seek out information and ideas across disciplines, and at other times to focus monomaniacally in isolation on a single problem.  The former is necessary to make sure I choose the right problem and have the right tools at my disposal, and the latter is necessary to force both my conscious and sub-conscious mind to give 100% effort to finding an answer”, he says.

William Moerner, who shared the 2014 Nobel Prize in Chemistry with Eric Betzig, describes a deeply personal relationship with the arts, especially music. In his experience, the listening to music and performing music excites and stimulates the brain. Like Chalfie, he too, elaborated on his views on interdisciplinarity in a short essay for the Lindau blog.

Each multidisciplinary scientist has to develop her own path to grapple with the challenges of multidisciplinary work and many scientists may find a more focused scientific career more appealing than the life of a “scattered dilettante”. In my own cell biology laboratory, we try to foster multidisciplinary thinking without necessarily forcing it onto my lab members. At the end of a weekly laboratory meeting in which experimental data is presented, we devote a brief period of time to discussing a book (fiction or non-fiction) that a lab member has recently read or touching on philosophical questions that relate to the broader scientific enterprise such as the nature of causality or experimentation. These are not meant to be exhaustive discussions but just serve as gentle nudges that it may be fun to engage in various creative and intellectual enterprises outside of cell biology. More recently, I asked my graduate students to write science-related haikus.

Megan Rexius-Hall is a bioengineering Ph.D. student who designs microfluidic devices to study intercellular communication and is specifically asking the question of how stem cells undergoing differentiation into a mature cell type communicate with their undifferentiated neighbors:


Our nearest neighbors
By their fate or commitment

– Megan Rexius-Hall (Ph.D. student in Bioengineering at the University of Illinois at Chicago)


Sarah Krantz is a Pharmacology Ph.D. student investigating whether inflamed cells activate anti-inflammatory mechanisms to ensure that there is some defined endpoint to the inflammatory process.


Hot red fire burns strong
Searing foes but for too long
Calls rain and lives on

–    Sarah Krantz (Ph.D. student in Pharmacology at the University of Illinois at Chicago)


I am not sure that there is a direct tangible benefit of encouraging graduate students to write haikus or reading books outside of science. The students definitely learned to appreciate the power of language, imagery and metaphors. Distilling the essence of their research project down to a three verse haiku may also help them remember the “big picture” of their respective projects. But the most important feedback I received from the students was that they enjoyed thinking about the haikus and tinkering with the words to perfect their poem. Isn’t it the joy of discovery and playful tinkering that makes us want to be scientists?


Note: This essay is part of a series of articles on the Lindau Nobel Laureate Meetings Blog which constitute the Multidisciplinarity Forum. Please also read the post “Thoughts on Multidisciplinarity” by the Nobel Laureate William Moerner in which he describes how the importance of multidisciplinarity in his scientific work and the importance of music and theater in his life as well as the essay “Forced Multidisciplinarity” by the Nobel Laureate Martin Chalfie in which he writes about the excitement he feels when engaging in multidisciplinary work, often in collaboration with other scholars.

We encourage you to share comments about your own thoughts and experiences with multidisciplinarity below. And if you want, please feel free to post haikus about your own scientific work!