Schnellerer Fortschritt für alle

Martin Chalfie setzt sich für Preprint-Archive für biologische Forschungsarbeiten ein: Dadurch können neue Ergebnisse und Erkenntnisse wesentlich früher einem deutlich größerem Publikum zugänglich gemacht werden.  

 

Credit: exdez/iStock.com

Credit: exdez/iStock.com

 

Wichtige Fragen, die während der Lindauer Nobelpreisträgertagung immer wieder gestellt wurden, sind die, wie die Zukunft der Forschung aussehen kann und wird und, wie man den status quo verbessern kann. Neben den bereits vielfach angesprochenen politischen Ereignissen und Einflüssen auf die Wissenschaft, ist ein weiteres großes Thema eher ein intrinsisches Problem: die Publikationsmaschinerie und die Bedeutung des Impact Factors. Kurz vor der Tagung haben sich etliche Nobelpreisträger bereits öffentlich gegen diese Methode des Journal-Rankings ausgesprochen. Und während der 67. Lindauer Tagung sprach sich auch Martin Chalfie dafür aus, wissenschaftliche Publikationen wieder mehr auf Grund ihrer tatsächlichen Qualität zu beurteilen, und weniger danach, in welchem Journal sie letztlich publiziert werden. Ich fragte ihn, was er sich denn als Alternative vorstelle, und welche Schritte er womöglich selbst schon unternommen habe. Seine Lösung lautete: ASAPbio.org – Accelerating Science and Publication in Biology.

ASAPbio ist eine Interessengemeinschaft gegründet von Ron Vale – einer Initiative von Wissenschaftlern für Wissenschaftler, um neue Erkenntnisse in den biologischen Wissenschaften einem breiteren Publikum schneller zugänglich zu machen. Gemeinsam mit Harold Varmus, Daniel Colón-Ramos und Jessica Polka, inzwischen Direktorin der Initiative, rief Chalfie die Plattform Anfang 2016 ins Leben. „Wir wollten ein Preprint-Archiv für die biologische Forschung entwickeln – in der Physik gibt es so etwas schon seit mindestens 25 Jahren.“ Sobald Forscher also bereit sind, ihre Arbeit und Ergebnisse der Welt mitzuteilen, so Chalfie weiter, können sie ihren Artikel auf einer Preprint-Plattform hochladen, wo er dann von anderen Wissenschaftlern, aber auch von der breiten Öffentlichkeit gelesen und kommentiert werden kann. Die größte biologisch-fokussierte Preprint-Plattform ist bisher bioRxiv. ASAPbio will in Zukunft als eine Sammelstelle für alle Preprints aus den biologischen Wissenschaften fungieren. „Dadurch verändert sich die gesamte Publikationsdynamik“, sagt Chalfie. Denn der konventionelle Publikationsweg sieht anders aus: eine wissenschaftliche Arbeit wird bei einem fachlich passenden Journal eingereicht, dort entscheiden in einem ersten Schritt ein oder mehrere Editoren, ob die Arbeit überhaupt zu dem Journal passt. Falls sich die Editoren dafür entscheiden, wird es an ein paar wenige Experten aus dem Fachgebiet weiter geleitet. Diese machen sich dann ebenfalls ein Bild von der Arbeit, und können sie gegebenenfalls als nicht-ausreichend ablehnen, oder zusätzliche Experimente verlangen. In einem solchen Fall haben die Autoren dann einige Monate Zeit um die gewünschten Änderungen zu erbringen, bevor es zu einer endgültigen Entscheidung kommt – die auch nach den Änderungen noch ein „Nein“ sein kann. Alles in Allem kann so ein Entscheidungsprozess mehrere Monate oder gar bis zu einem Jahr dauern – und wird die Arbeit am Ende tatsächlich abgelehnt, müssen die Forscher diese von Neuem bei einem anderen Journal einreichen. Dadurch verlieren nicht nur sie wertvolle Zeit, sondern auch die Forschungsgemeinschaft sowie die breite Öffentlichkeit, die während dem Entscheidungsprozess keinen Zugriff auf die neuen Erkenntnisse haben. „Preprint-Archive hingegen machen neue Erkenntnisse und Forschungsfortschritte sofort zugänglich für alle – egal ob Wissenschaftler oder Schüler, und ohne dass dafür gezahlt werden muss“, fasst Chalfie die Vorteile zusammen.

Zudem bekommt jede Arbeit automatisch bei der Einstellung ein festes Erstellungsdatum, auf das sich die Autoren berufen können, sollte zeitnah eine ähnliche Arbeit veröffentlicht werden.

Chalfie betont aber: „Es geht hier nicht darum, frühzeitig die eigenen Rohdaten zu veröffentlichen.“ Vielmehr sollte die Arbeit praktisch zeitgleich mit der ersten Journaleinreichung auf eine Archiv-Plattform gestellt werden, und dann entsprechend des Journal-Feedbacks oder der Kommentare, die über die Plattform eingereicht werden, sukzessive überarbeitet werden.

 

Martin Chalfie talking to young scientists during the 67th Lindau Nobel Laureate Meeting,  Photo/Credit: Julia Nimke/Lindau Nobel Laureate Meeting

Martin Chalfie mit Nachwuchswissenschaftlern während der 67. Lindauer Tagung, Photo/Credit: Julia Nimke/Lindau Nobel Laureate Meeting

 

„Bereits bei einem der ersten organisatorischen Treffen sprachen wir auch darüber, wie wohl die etablierten Journals auf die Plattformen und die zentrale Sammelstelle reagieren würden. Glücklicherweise haben sich die großen Journals wie Science, Nature oder die Professional Society Journals, aber auch viele andere, allesamt für Preprint-Archive ausgesprochen“, erklärt Chalfie. Die Journals haben also kein Problem damit, wenn die Autoren ihre Arbeit gleichzeitig bei ihnen einreichen und auf einer Plattform zugänglich machen – viele ermöglichen inzwischen sogar „Joint Submissions“: Die Journals fragen bei der Einreichung einer Studie mittlerweile, ob die Autoren die Arbeit auch gleichzeitig auf einem Archiv-Server zugänglich machen möchten.

Ein weiteres Zeichen, dass dieses neue Vorveröffentlichungssystem sich auf lange Sicht etablieren wird, ist die Aufnahme solch pre-archivierter Arbeiten als Kriterium für Beförderungen, die Vergabe von Projektgeldern und ähnlicher Auswahlverfahren. Stolz berichtet Chalfie: „Das Howard Hughes Medical Institute, die NIH, Wellcome Trust und viele Universitäten beziehen Arbeiten aus Preprint-Archiven bereits in ihre Bewertungen von Bewerbern mit ein.“

Obwohl die Preprint-Archive für die biologische Forschung im Gegensatz zur Physik noch in den Kinderschuhen stecken und von vielen Wissenschaftlern erst noch entdeckt werden müssen, ist das Konzept dennoch bereits bei großen Forschungsinstituten und renommierten Journals angekommen und wird akzeptiert. Die Initiative von ASAPBio bietet somit eine ausgezeichnete Möglichkeit, die festgefahrene Publikationssituation in den Lebenswissenschaften in eine neue Richtung zu lenken und die tatsächliche Qualität der Forschungsarbeit anstelle eines Impact Factors wieder in den Vordergrund zu stellen.

“It Is Time That We Write Our Own History in Science!” – Eva Maria Wara Alvarez Pari

Interview with #LiNo17 young scientist Eva Maria Wara Alvarez Pari

This interview is part of a series of interviews of the “Women in Research” blog that features young female scientists participating in the 67th Lindau Nobel Laureate Meeting, to increase the visibility of women in research (more information for and about women in science by “Women in Research” on Facebook and Twitter). Enjoy the interview with Eva Maria Wara and get inspired.

 

Eva_1

Eva Maria Alvarez Pari, 23, from Bolivia is an undergraduate chemistry student doing her Master degree at the Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany. Eva is in the first stage of her academic career. Nevertheless, she is deeply interested in organic chemistry applied to the medicine.

 

What inspired you to pursue a career in science/chemistry?

Well, I consider that question really anecdotal. During the elementary school I was close to failing one year of my studies because of mathematics. Nevertheless, in high school I have been immersed in science more and more. My first approach to chemistry was in 2007, when I started high school. I have been lucky to have an amazing woman as a chemistry teacher who has supported me in every stage of my academic life. She deeply motivated me. Nevertheless I made my first step, when one day I saw in the newspaper a competition that has been launched for high school students. I had a big desire to participate and I asked my teacher to train me for Chemistry Olympics competitions in my city. Although I have won a third place I didn’t feel any regret or depression. I was completely sure, I did my best. Since then I put my heart and soul into the chemistry. I have participated in some of my teacher’s lectures at her technical institute, where I gained my first experience working at lab under her supervision. Since mathematics at high school caught my attention by creating models to explain some natural phenomena, I decided to do a Bachelor degree in mathematics. Nevertheless, there was something missing in my life. Then I realised that if I couldn’t study chemistry I would probably have regrets later. So, I started my chemistry studies immediately. At the end, I have completed both careers. It was really hard to manage the schedules of my different subjects avoiding overlapping of the courses and arranging the transportation stuff to be on time to every single lecture. But when there is passion, everything is possible. Being motivated made it possible to complete both careers in five years; otherwise, I probably wouldn’t have done it without this driving force.

 

Who are your role models?

Definitely my professors have played a big role in my academic formation. I was fortunate to being surrounded by powerful women in chemistry. My chemistry teacher at school was a devoted person who dedicated her life and time to motivate students to pursue a scientific career. She supported me even outside the classroom. We were not teacher and student anymore, but we started to be two people learning from each other drawn by a shared passion to chemistry. During my undergraduate studies, two dedicated women were a continuous support to my scientific career. I feel admiration of their outstanding research projects and their role as women holding high positions in the university which is not common in my home country. They oriented me personally and academically, keeping my motivation to pursue an academic career. Certainly one of my strongest motivations is attributed to Marie Sklodowska-Curie, who gave the first step and opened to us the opportunities to be as equals to men in science.

I have made the best decision of my life and I don’t regret it at all.

Last but not least, my parents have always been concerned about my education and gave me all the facilities to tackle a scientific career. No expense was too great to give me the best education since I was at elementary school. They gave me freedom to decide what I wanted to become. Actually, they are supporting me in my master studies economically, and they even have plans to do so, too, for my PhD studies because they are concern about my deep love for Chemistry.

 

How did you get to where you are in your career path?

Nothing can be done without motivation and constant work. I realised at high school that to become a scientist involves many years of studies. But that is not everything. You must keep yourself in constant learning because science never sleeps. So, even knowing that, I have made the best decision of my life and I don’t regret it at all. Since high school I have set long and short goals to become a scientist, and it also meant to get a better education outside. I am always daydreaming because it keeps me motivated. Since my first day in Germany on October 1st, I have looked for many opportunities to encourage my scientific aspirations. As an anecdote, one day before the deadlines for the Lindau Nobel Laureate Meeting I have seen a publication on Facebook related to eight women who participated in the preliminary meeting. I didn’t miss the opportunity to apply immediately and because of that I arrived too late to my preliminary Master meeting in Erlangen. Of course, now I am really glad that this happened. The first obstacle I have faced took place, when I decided to apply for a scholarship. Unfortunately, most of the scholarships launched in my home country require one year of work experience, which reduces your aspirations to apply as soon as you have completed your bachelor studies, even considering these studies in Bolivia last five years. This drawback event helped me to understand that if I want to fulfil my dreams there was no other solution than to study abroad by myself and with the economic support of my family. Since I am here in Germany, I had the opportunity to be part of Prof. Heinrich’s group. Their research is focused on Medicinal Chemistry with topics like carbofluorination reactions. Prof. Heinrich has given me a comfortable environment to work, and my colleagues are a scientific family who are always willing to share knowledge and advice. I have been part of seminar discussions of organic total synthesis of some active substances and natural products. There, I found a space to be immersed in a wide spread of acknowledgment so I could start shaping my scientific career. Now, I have many projects in mind and I am also looking forward to getting a PhD position once I finish my Master degree so I can continue building my academic life.

 

Eva_3

 

What is the coolest project you have worked on and why?

In my home country during my last year of my Bachelor in Chemistry, I have spent three months working in a scientific institution where I could get knowledge of the use of many of the technical instruments that chemists use to elucidate organic structures. The person in charge, Dr. Marcelo Bascope, is used to giving the interns the opportunity to perform scientific projects during their stay there, which I consider a good opportunity to start with your own scientific project and see your limitations and strengths working in a lab. I decided to carry out the identification of active principles from Nicotiana Glauca, a medicinal plant native from South America, which has as main component the alkaloid anabasine. I spent a month working at this project but the most rewarding experience I had was the freedom to perform every step from sample preparation up to purification and identification using the equipment to elucidate the structure of each component. The satisfaction to complete everything by myself helped me to realise that I was meant to work in a lab. This was the first close experience at the lab doing research. The freedom to work on my own increased my self-confidence, because there was no one telling me what to do or putting pressure on me. It was only me and my research growing day by day like a baby becoming an adult.

Take risks in scientific life.

What’s a time you felt immense pride in yourself/your work?

When I was admitted to a Master’s degree programme at Friedrich-Alexander University in Erlangen I was really proud of all I did so far to get an education abroad. Germany is the country for scientific opportunities. I have been here for only six months and I am part of a research team, a PhD student Anna Pirzer (whom I collaborated with in the lab and who gave me freedom to pursue my own ideas) and I are going to publish a research article. I am proud of myself, of everything I have done to pursue a scientific career, every obstacle I had to overcome to achieve my goals and for all the work that lies ahead.

 

Eva_2

What is a “day in the life” of Eva like?

After I wake up, I organise everything to go to my master lectures and I prepare my material of studies. Every Thursday of the week I am part of discussion in a seminar session related to total organic synthesis in Prof. Heinrich’s group, so I can polish and hone my organic synthesis skills through wide mechanisms of reactions used to synthesise complex molecules. During the afternoon, if I don’t have any lectures to attend I go to the library to look for some books to study for the upcoming examinations or I just stay the whole afternoon studying in the library with some friends or alone. During the evening, I write some e-mails to my professors and colleagues from my home university keeping in contact with them and sharing science in some way while I enjoy hearing instrumental music. My favourites are movie soundtracks. I am fond into Hans Zimmer compositions.

 

What are you seeking to accomplish in your career?

My scientific aspirations in science are not related to immortalising my name, not even to economic ambitions. I have a big desire to follow an academic career. Nothing is more rewarding than to share and receive knowledge. I have a deep desire to become a Professor and to have my own research group, with active students performing activities regarding science and discussing breakthroughs in chemistry. I have always been interested in discussing and sharing ideas, even during my bachelor studies I used to organise out-of-the-classroom lectures prepared by myself and my colleagues to encourage our understanding of chemistry. At that time, we were aware that our bachelor program and lab courses didn’t provide the same knowledge in some areas of chemistry compared to cutting-edge universities in science.

 

What do you like to do when you’re not doing research?

My daily activities are not limited to study. I devote my free day doing out-door activities like hiking or taking a walk in the city, it keeps me motivated and I find equilibrium between my scientific life and my personal life. I love writing poems and thoughts as well. During the weekend, me and my master partners go to some events in Germany, go to shopping or run cultural meetings by sharing our typical food. Most of the time, I am with my “German family”. Since my childhood, I had the opportunity to grow up under a constant influence of German culture. I maintain relationship with people who belong to Missionskreis Ayopaya, an institution that is directly connected to Bolivia through German volunteering.

I am pretty sure, the understanding of origin of life through chemistry laws would be the next breakthrough in science.

What advice do you have for other women interested in science/chemistry?

Take risks in scientific life. Don’t be shy or afraid to express your own ideas even if you are mistaken. Try your best in everything you perform and overcome fear of complexities, of academic inferiority, of the unknown and of failure. Trust yourself and keep on moving even when it means that you only advance little by little. Scientific research has obstacles and the time one invests may extend too many years but the results are a lifetime achievement, a satisfaction that your ideas could encourage the welfare of humanity and the development of one’s country. This fills you with happiness. We are not Marie Curies – of course not. It is time that we write our own history in science!

 

Eva_4

 

In your opinion, what will be the next great breakthrough in science/chemistry?

Regarding my particular interests in organic synthesis, we always have to deal with chiral molecules which are present in nature as single enantiomers. I have completed my bachelor thesis in mathematics related to group and graph theories in order to simplify our understanding of symmetry in organic molecules through mathematics. Unfortunately, it is not simple to reach a general explanation. Most of the complex molecules of life are chiral so there is no way to apply these mathematical models to them. I am pretty sure, the understanding of origin of life through chemistry laws would be the next breakthrough in science.

 the number of women who don’t show interest in academic careers has increased

What should be done to increase the number of female scientists and female professors?

Since I have been in Germany for six months, I have realised that there is no big gap between women and men pursuing a scientific career. Both have the same opportunities and support in the first stage of their scientific careers. The numbers of women are even bigger in PhD research groups compared to men, according to my experience working in the lab. Over the last few years, the gap has been narrowed considerably in developed countries. Nevertheless, the number of women who don’t show interest in academic careers has increased. I think that there are still some prejudices related to the balance between family and academia in women’s lives – that is another reason why some women speed up their graduate studies in order to get a stable position at the university before deciding to have a family. There must be some guarantee that a woman who decides to have children could continue in the same charge after taking a semester off, but, unfortunately, women cannot recover the same opportunities they had before they decided to start a family. Universities or academic institutions must adopt special programmes or work-family policies to support women who decide to start a family before getting tenure and not put their later chances at risk.

Focus on Africa: Advancing Science to Advance Humankind

One of the things I love about Lindau is that it is truly diverse and inclusive. This is the case from a disciplinary point of view, in that although this is a chemistry meeting, non-chemists are welcome – physicists, material scientists, engineers, and even maths-maniacs are encouraged to apply and attend. And Lindau is also diverse from a national standpoint – there are nerds from all over the world here. 80 countries are represented, as are numerous cultures, languages, religions and experiences.

On Monday morning, I had the privilege of attending the breakfast of the African delegation, a group of approximately 40 students and postdocs from many countries across all of Africa, including Senegal, Nigeria, Egypt, South Africa, Sudan, and Kenya. As we dined on fresh orange juice and fried eggs, I got chatting with a few young scientists who hail from Kenya, including Titus Masese, who is a Research Scientist at the National Institute of Advanced Industrial Science and Technology (AIST) in Japan.

Based in Osaka, Masese, 33, has lived in Japan since he was 18 years old, when he was recruited to attend Kyoto University as a Japanese Government Scholar, a programme that brings talented Kenyan students to Japan. At Kyoto U, he received his Bachelors in materials science and engineering and his Masters and PhD in electrochemistry. He is fluent is Japanese, Swahili, Kisii (a traditional language from the region of Kenya in which he grew up) and English.

 

Young scientist Titus Masese and science writer Alaina Levine, Photo/Credit: Alaina G. Levine

Young scientist Titus Masese and science writer Alaina Levine, Photo/Credit: Alaina G. Levine

 

Masese, whose presence at Lindau is supported by both AIST and a Horst-Köhler-Fellowship (supported by the Robert Bosch Stiftung), and whose research focus is in energy storage (rechargeable batteries), spent some time speaking with me about his enthusiasm for attending Lindau. We also discussed the many bi-directional, multinational opportunities that can be leveraged for African scientific efforts in support of African innovators across the continent and across the world.

This is an especially important time for channels of communication to be expanded as it relates to financial support of science, no matter where in the world we pursue our work. As Masese notes, it is crucial for people from African nations to attend Lindau, because “in terms of science and technology, there is a lot of research in Africa, but it is not as well know, and it is not being [leveraged],” he says. “The Lindau Meeting is the right platform to showcase the research and to find collaborators so that we can further advance the work. Scientists in some countries in Africa don’t get enough funding from their governments, so they come to Lindau, and perhaps can get more funding as well as opportunities for partnerships.”

Africa is the cradle of mankind, and African researchers and research institutions are known world leaders in many areas of STEM, he shares, including anthropology, mineralogy, agriculture, horticulture and energy storage. And yet, “even with the abundance of natural resources and brilliant minds, there’s just not enough research funding,” he says.

In Masese’s native Kenya, chemistry research and application has led to major insights and innovation in the field and beyond, he says. For example, Kenyan chemists apply their chemistry knowhow to solve problems related to designing drugs to combat tropical diseases such as cholera and malaria, and in the field of anthropology, chemists collaborate with scientists around the world on projects involving carbon dating of artefacts. Geochemists here use their talents to understand, find and characterise minerals. There are also cutting-edge investigations being conducted on designing compounds that can absorb and remove carcinogenic pollutants, such as lead and arsenic, from water and other resources, and on tackling radioactive waste disposal.

Another area he is closely following is African research in the energy sector. “Energy storage and finding energy solutions is a global crisis,” he says. “I think African governments recognise this. They also recognise there is more work to be done in this area. So I encourage government representatives to speak with scientists and engineers in their nations, and leverage that talent and knowhow to make a greater impact in finding common-sense energy solutions.”

Although Masese is not working with Kenyan researchers at this time, he would certainly like to do so in the future if the funding is available and timing is right. He regularly interfaces with the Kenyan Embassy in Japan, and recently had lunch with the Ambassador, H.E. Mr. Solomon K. Maina, who “is appreciative of the work that Kenyans in Japan do,” he says.

 

African Outreach Breakfast during the 67th Lindau Nobel Laureate Meeting, Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings

African Outreach Breakfast during the 67th Lindau Nobel Laureate Meeting, Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings

 

 

Masese is optimistic that opportunity for strengthening national, international, and intercontinental partnerships for African scientists worldwide will emerge from strategic networking. “The Kenyans and Africans I’ve met say the same thing, whether they are from Senegal or Nigeria or live in other countries: we should form networks to unite together to do something for the African continent in terms of research.” Tools such as Facebook groups dedicated to fostering alliances between African scholars are helpful in this regard, serving as just one mechanism to bind together innovators who are scattered across the world but are members of the African diaspora. “I have met people in different fields and they are not being funded by African governments,” he adds. “We can form collaborations as we try to find ways to convince our governments to support important research.”

The future is bright for Africa’s scientific enterprises, and for Masese himself, who next year will be evaluated for a permanent position at AIST. One of the goals of some of Kenyan expats in Japan is to create a new research institution in Kenya. “We want to build one single institute that will do multidisciplinary research, and do cutting edge work that will be of benefit to the entire African community,” he says.

And his presence at Lindau is playing a role in inspiring him to think big. “We could build an African Young Scientist Summit, like the Lindau Meeting and similar conferences in Asia,” he says with a smile. “There is a lot of interesting research being done in Africa, despite the fact that there are not as many resources being devoted to these scholars. But there is a way to open it to the world, with meetings like Lindau. This meeting can make a difference and serve as an enzyme to advance scientific research across Africa.”

Chemists Respond to Climate Change with Sustainable Fuel and Chemical Production

Climate change is a common lecture topic at the Lindau Nobel Laureate Meetings. At the opening of the 67th Lindau Meeting, William E. Moerner presented the keynote speech prepared by Steven Chu, 1997 Nobel Laureate in physics and former U.S. Secretary of Energy. In his speech, Chu described how clean energy technologies provide an insurance policy against the societal risks of climate change.

At previous meetings, Nobel Laureates Mario Molina, Paul J. Crutzen, and F. Sherwood Rowland have detailed how greenhouse gases produced by burning fossil fuels alter atmospheric chemistry and warms the planet. Reducing greenhouse gases, particularly carbon dioxide emissions, is key to stopping the planet’s warming temperature. But instead of viewing carbon dioxide as a problem, what happens if it is also part of a solution to climate change?

 

Science Breakfast Austria during the 67th Lindau Nobel Laureate Meeting, Photo/Credit: Julia Nimke/Lindau Nobel Laureate Meeting

Science Breakfast Austria during the 67th Lindau Nobel Laureate Meeting, Credit: Julia Nimke/Lindau Nobel Laureate Meeting

 

Research discussed by Nobel Laureates and young scientists at the 67th Lindau Meeting included ways to use carbon dioxide as a renewable source of synthetic fuel and useful chemicals. Currently, fuels and chemicals come from refined and processed oil and natural gas. Producing these compounds from carbon dioxide captured from the atmosphere or factory emissions could be environmentally sustainable because carbon dioxide released during production or consumption is recycled to make new fuel or material. Sustainable and renewable feedstocks are one aspect of green chemistry, a key topic at this year’s meeting.

During a science breakfast hosted by the Austrian Federal Ministry of Science, Research, and Economy on Tuesday morning, Bernard L. Feringa, 2016 Nobel Laureate in Chemistry, outlined three challenges for carbon capture and utilisation: separating carbon dioxide from other gases, efficiently concentrating it, and catalytically converting the inert molecule to useful fuel and chemicals.

In addition to his Nobel-winning work on molecular machines, Feringa also studies catalysis. While working at Shell in the early 1980s, he developed lithium catalysts to reduce carbon dioxide. The project ended after a couple of years, however, when the researchers realised they would need all the lithium in the world just to make a reasonable amount of fuel.

 

and Melissae Fellet during a Poster Session at the 67th Lindau Nobel Laureate Meeting, Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings

Biswajit Mondal and Melissae Fellet during the Poster Session at the 67th Lindau Meeting, Credit: Christian Flemming/Lindau Nobel Laureate Meetings

Since then, researchers around the world have developed various electrochemical and photothermal catalysts that reduce carbon dioxide into compounds such as carbon monoxide, formic acid, ethylene and methane. Several young scienists attending the meeting are studying these catalysts, and two presented their work during the poster session.

Biswajit Mondal, at the Indian Association for the Cultivation of Science, studies the mechanism of iron-porphyrin electrocatalysts for carbon dioxide reduction. With an understanding of the precise molecular changes during every step of the reduction reaction, researchers can then tailor the catalyst structure to enhance the reaction efficiency.

Dayne F. Swearer, at Rice University, combines two reactive functions in one aluminum nanoparticle to unlock new catalytic mechanisms for known reactions. In his nanoparticles, the aluminium core absorbs light and generates an energy carrier called a plasmon, which can alter and enhance the activity of a metal catalyst on the outside of the nanoparticle. For example, a particle with a shell of copper oxide its aluminium core reduces carbon dioxide to carbon monoxide faster and more efficiently than particles made of either material alone.

Back at the science breakfast, Feringa encouraged young scientists to investigate photoredox catalysts that reduce carbon dioxide using absorbed light energy. These catalysts can create a variety of reactive intermediates, including radical anions and cations, which could be used to add carbon dioxide to hydrocarbons. Such reactions provide renewable ways to make building blocks for plastics and other common polymers.

 

Young scientist Anna Eibel during the Science Breakfast, Credit: Julia Nimke/Lindau Nobel Laureate Meetings

Young scientist Anna Eibel during the Science Breakfast, Credit: Julia Nimke/Lindau Nobel Laureate Meetings

Renewable routes to acrylic acid, the building block of acrylate polymers common in dental work, are interesting to Anna Eibel, a young scientist at the Graz University of Technology in Austria and a speaker at the science breakfast. She develops new molecules to induce acrylate polymerisation with light at longer wavelengths than the ultraviolet used now.

To really address carbon dioxide emissions, however, renewable routes to synthetic fuels such as methane and methanol are needed. In 1998, George Olah, the 1994 Nobel Laureate in Chemistry, talked about synthetic methanol production from carbon dioxide at the 48th Lindau Meeting, and the topic reappeared at the science breakfast this year.

Chemists are in a unique position to advance renewable fuels and chemicals, Feringa said. The main research questions in this area involve problems of catalysis, electrochemistry, photochemistry, material synthesis and chemical conversions. Feringa encouraged the young scientists to take opportunities to tackle these questions. “Of course you may contribute only a small step, but of course we have to do it. It is our duty to society […] to open opportunities for the future.”

#LiNo17 Daily Recap – Tuesday, 27 June 2017

We are already three days into this year’s chemistry meeting and there are so many interesting things happening. We have collected a huge amount of exhilarating pictures, exceptional lectures and thought-provoking blog contributions. So you can guess that there is so much more that you should definitly check out on our mediatheque than we present to you in our daily recap . Enjoy the following highlights!

 

Video of the day:

“This meeting is about mentorship, and it’s about the future, it’s not about the Nobel Laureates, it is [in fact] about mentoring the next generation of scientists – OUR BEST HOPE FOR THE FUTURE” – Brian Malow has provided us with a live video featuring seven young scientists.

 

 

Picture of the day:

After having the Poster Flashes on Monday, our Poster Session proved to be a success. Frank Biedermann, a young scientist explaining his research about “Supramolecular Sensing Ensembles” to Nobel Laureate Erwin Neher.

67th Lindau Nobel Laureate Meeting Chemistry, 25.06.2017 - 30.06.2017, Lindau, Germany, Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings Poster Session

 

For even more pictures from the Lindau Nobel Laureate Meetings, past and present, take a look at our Flickr account.

 

Blog of the day:

“When scientific issues become publicly controversial, Nobel Laureates have a history of making strong statements at the Lindau Nobel Laureate Meetings,” writes Melissae Fellet in her new article on science in a post-truth era. Politics and the question of what scientists can do to rebuild trust is one of the main topics being discussed by the participants of the 67th Lindau Meeting.

Post-truth_Slider

Press Talk on ‘Science in a Post-Truth Era’ hosted by Deutsche Welle during the 67th Lindau Meeting. Photo/Credit: Julia Nimke/Lindau Nobel Laureate Meetings

Do take a look at more of our exciting blog posts.

 

Tweets of the day:

 

Last but not least, follow us on Twitter @lindaunobel and Instagram @lindaunobel and keep an eye out for #LiNo17

 

Over the course of the next four days, we will keep you updated on the 67th Lindau Nobel Laureate Meeting with our daily recaps. The idea behind it is to bring to you the day’s highlights in a blink of an eye. The daily recaps will feature blog posts, photos and videos from the mediatheque.

Wissenschaft ist weder gut noch böse, sie versorgt uns mit Fakten – Mario Molina

Der zweite volle Programmtag der Lindauer Nobelpreisträgertagung ermutigt vor allem die Nachwuchswissenschaftler sich auf frischen Forschungspfaden zu bewegen, und für ihre Ergebnisse einzustehen.

Die aktuelle politische Debatte um den Klimawandel und den Rückzug der US aus dem „Paris Climate Accord“ griff Mario Molina in seinem Vortrag am Vormittag auf. Molina, ursprünglich aus dem Gastgeberland des diesjährigen International Day Mexiko, erhielt 1995 den Nobelpreis für die Entdeckung und das Verständnis  der Entwicklung des Ozonlochs. Er war außerdem als wissenschaftlicher Berater für die Obama-Administration tätig, und steht der aktuellen Haltung der US-Regierung daher voller Unverständnis gegenüber. Er betonte deswegen noch einmal ausdrücklich: „Die Wissenschaft ist weder gut noch böse. Wir erhalten Daten und Fakten durch die Forschung und können dadurch präzise Vorhersagen berechnen.“ Erst wenn die Wirtschaft und die Politik sich einschalten, so Molina weiter, wird die Forschungs- zur Gewissensfrage. Dann müsse man als Wissenschaftler aber auch für das Bild, das die Daten zeichnen, einstehen, und sich der Faktenignoranz entgegenstellen.

 

67th Lindau Nobel Laureate Meeting, 27.06.2017, Lindau, Germany, Credit: Julia Nimke / 67th Lindau Nobel Laureate Meeting, Lecture Molina

Mario Molina während seines Vortrags auf der 67. Lindauer Nobelpreisträgertagung. Credit: Julia Nimke/Lindau Nobel Laureate Meetings

 

Im Gegensatz dazu sieht es Ada Yonath nicht unbedingt als die Pflicht der Wissenschaftler an, sich öffentlich gegen die Erderwärmung auszusprechen. Vielmehr sieht sie die Pflicht der Forschung darin, Möglichkeiten zu schaffen, um weniger Luftverschmutzung zu erzeugen. Yonath erhielt 2009 den Nobelpreis in Chemie – als erst vierte Frau insgesamt – für die Entschlüsselung der Funktion von Ribosomen. Diese bauen aus den Aminosäuren, die vom genetischen Code abgelesen werden, die Proteine zusammen, welche wiederum die Grundbausteine unseres Organismus sind: ohne funktionierende Ribosomen gäbe es keinen gesunden Organismus. Abgesehen von der zunehmenden Politisierung wissenschaftlicher Ergebnisse sieht Yonath aber noch weitere große Probleme in der heutigen Forschungslandschaft: „Heute braucht jeder ein bestimmtes Vorbild, dem er unbedingt nacheifern möchte. Niemand will mehr widersprechen – der Pioniergeist fehlt.“ Dadurch würden kreative Ideen unterdrückt, und es kämen keine echten Innovationen mehr zu Stande. Zudem, so Yonath, würde heute zuviel Wert auf translationale und angewandte Forschung gelegt. Doch diese sei zwar gut für Industrie und Wirtschaft, bringe aber  keinen echten Fortschritt mehr mit sich. Stattdessen wirbt sie im Interview dafür, sich an der Forschung wieder mehr nur der Forschung und des Wissensgewinnes zuliebe zu beteiligen und zu erfreuen. „Alles was wir heute wissen und verstehen, aber gestern noch nicht verstanden haben, ist bereits unglaublich wertvoll für das Wissen der Menschheit.“ Sie illustriert diese Idee mit einem sehr anschaulichen Beispiel: „Wenn alle sich immer nur mit der Besserung der Brennleistung und Haltbarkeit von Kerzen befasst hätten, gäbe es heute immer noch keinen Strom oder Glühbirnen. Nur wenn es Leute gibt, die abseits der bekannten Pfade forschen, ergeben sich echte Neuerungen.“

 

Schülergespräch mit Harald zur Hausen, 67. Lindauer Nobelpreisträgertagung, 27.06.2017. Foto: Christian Flemming/Lindau Nobel Laureate Meetings

Schülergespräch mit Harald zur Hausen, 67. Lindauer Nobelpreisträgertagung, 27.06.2017. Foto: Christian Flemming/Lindau Nobel Laureate Meetings

Beharrlichkeit und innovatives Denken nannte auch Professor Harald zur Hausen als die Kernmerkmale erfolgreicher Wissenschaftler. Im Rahmen der Lindauer Nobelpreistagung werden auch Satellitenveranstaltungen angeboten, bei der Nobelpreisträger häufig mit Kindern und Jugendlichen über ihre Forschung sprechen. Dieses Jahr sprach Harald zur Hausen vor etwa 100 Oberstufen-Gymnasiasten aus Lindau, Friedrichshafen und Bregenz. Zur Hausen wurde 2008 der Nobelpreis in Physiologie oder Medizin verliehen, für seine Entdeckung, dass Gebärmutterhalskrebs von Viren ausgelöst wird, sowie für seine Entwicklung eines Impfstoffes gegen den Erreger. Er erzählte über 90 Minuten hinweg von seinem Werdegang von der klinischen Medizin zur Forschung und wie sein fester Glaube, dass bestimmte Krebsarten von Viren ausgelöst werden, ihn schließlich zu seiner bahnbrechenden Entdeckung und Entwicklung gebracht hat. Er betonte, wie er an seiner Überzeugung auf Grund vorläufiger Daten festhielt, und sich immer wieder gegen skeptische Kollegen oder Journalisten durchsetzte. Die Schüler hörten die ganze Zeit über gebannt zu und stellten viele interessierte Fragen. Der Austausch zeigt einmal mehr wie wertvoll die Kommunikation von Wissenschaftlern mit der Öffentlichkeit ist. Auch zur Hausen liegt dieses Thema sehr am Herzen, denn „Prävention ist immer besser als Heilung. Wenn wir bei solchen Veranstaltungen Verständnis und Interesse für die Forschung gewinnen können, haben wir Großes geschafft.“

Ähnlich wie Ada Yonath sieht auch zur Hausen einige Entwicklungen in der Wissenschaft durchaus kritisch. „Es herrscht viel zu oft noch ein dogmatisches Klima in den Laboren. Junge Wissenschaftler müssen wieder mehr hinterfragen und die Äußerungen ihrer Mentoren nicht als Gebote hinnehmen.“ Er wünscht sich stattdessen, dass sie sich auch auf neuen Forschungsgebieten austoben, und sich vermehrt mit fachfremden Kollegen austauschen.

Science in a Post-Truth Era

When scientific issues become publicly controversial, Nobel Laureates have a history of making strong statements at the Lindau Nobel Laureate Meetings, starting at the second meeting in 1955. There, eighteen laureates signed the first Mainau Declaration urging world leaders to not use nuclear weapons. The second Mainau declaration, signed by 36 laureates at the 65th Lindau Meeting in 2015 and by 40 additional laureates soon after, encouraged government leaders to take action to minimize the risks of climate change.  

And this year, Laureates, young scientists and former science diplomats made their position known about speaking up when “alternative facts” drive unpredictable political changes in the United States, United Kingdom and other countries. “Scientists cannot ignore what is happening in the world,” Countess Bettina Bernadotte auf Wisborg, President of the Council of the Lindau Meetings, said in her speech opening the 67th Lindau Meeting this year. “Some rulers, and people, seem to feel threatened by progress and the fact-oriented power of science.”

Countess Bettina Bernadotte presented the opening speech on Sunday evening.

Countess Bettina Bernadotte presented the opening speech on Sunday evening. Photo/Credit: Julia Nimke/Lindau Nobel Laureate Meetings

Last year, a volatile electorate voted for Britain to leave the European Union, leaving non-British EU nationals working in the country concerned about losing their jobs. Earlier this year, US President Trump withdrew the country’s support from the Paris Accord, an international treaty signed by 195 members of the United Nations agreeing to take action to mitigate climate change.

This year it seems politics are a common topic during informal gatherings at Lindau, with young researchers asking international colleagues about their experiences, seeking to better understand situations behind the headlines. Conversations about science and politics continued with a discussion for the media about today’s post-truth era hosted by Deutsche Welle on Monday afternoon.

Although public questioning of scientific information is particularly widespread today, alternative facts can be found even during the Renaissance, said Helga Nowotny, Vice-President of the Council for the Lindau Nobel Laureate Meetings and former president of the European Research Council, Austria. “We have never lived in a truth era.”

When science and politics intersect, a natural part of the scientific method – that scientific facts are not determined forever — presents a challenge for the perceptions of scientific truthfulness. Even when a large consensus of scientists agrees about a particular position, such as humanity’s role in climate change, the iterative process of science leaves uncertainty that some politicians can use to support their efforts to gather more votes. “Elections have become very close to marketing campaigns,” said Arturo Borja, Director of International Cooperation at the Consejo Nacional de Ciencia y Tecnología (CONACYT) in Mexico.

 

Press Talk on 'Science in a Post-Truth Era' hosted by Deutsche Welle during the 67th Lindau Meeting. Photo/Credit: Julia Nimke/Lindau Nobel Laureate Meetings

Press Talk on ‘Science in a Post-Truth Era’ hosted by Deutsche Welle during the 67th Lindau Meeting. Photo/Credit: Julia Nimke/Lindau Nobel Laureate Meetings

 

Marketing campaigns can trigger skepticism and critical analysis, leading to a general public distrust of politicians. Scientists, however, still have the public’s trust: More than 75% of Americans trust scientists to act in the public interest, while less than 50% have a similar trust in elected officials, according to a 2016 report from the Pew Research Center. But when politics makes it seem like the public is losing confidence in science, how do scientists help rebuild that trust?

Two suggestions arose during the discussion:

Citizen science projects, where non-scientists help scientists do research, are one way to help the public learn about the process of science by engaging with it themselves. These projects are also a way for scientists to give back to society, said Melania Zauri, a young scientist from Italy working at the Research Center for Molecular Medicine of the Austrian Academy of Sciences.

 

Young scientist Marian Nkansah, Nobel Lauraete William E. Moerner, and Helga Nowotny, Vice-President of the Council for the Lindau Nobel Laureate Meetings . Phot/Credit: Lindau Nobel Laureate Meetings

Young scientist Marian Nkansah, Nobel Lauraete William E. Moerner, and Helga Nowotny, Vice-President of the Council for the Lindau Nobel Laureate Meetings. Photo/Credit: Lindau Nobel Laureate Meetings

In communication courses, Marian Nkahsah, a young scientist from Kwame Knrumah University of Science and Technology in Ghana, learned how to identify her audience so she can speak directly to them. Scientists’ voices should be as loud as those who are propagating lies, she said.

William E. Moerner, 2014 Nobel Laureate in Chemistry and professor at Stanford University encouraged other scientists to talk to their friends and family about the scientific method. He also speaks publically, including at the March for Science in San Jose, California. He said speaking from an established connection of shared humanity could help break down barriers to misinformation.

“Science is not an alternative fact,” Moerner said. “It is something we have to use if we want to push our future forward.”


Women Have Unique Qualities That Make Them Great Scientists, Says Hannah Noa Barad

Interview with #LiNo17 young scientist Hannah Noa Barad

This interview is part of a series of interviews of the “Women in Research” blog that features young female scientists participating in the 67th Lindau Nobel Laureate Meeting, to increase the visibility of women in research (more information for and about women in science by “Women in Research” on Facebook and Twitter). Enjoy the interview with Hannah and get inspired.

 

Hannah_Noa_1

Hannah Noa Barad, 30, from Israel is a PhD Student at the Bar Ilan University, Israel. Her research is in the field of renewable energy, specifically solar energy and solar cells. The method she uses in her research is combinatorial material science and high-throughput analysis to discover new metal oxides and utilise them in all-oxide based solar cells. She also focuses on understanding the mechanisms behind the photovoltaic activity of the new solar cells.

 

 

What inspired you to pursue a career in science/chemistry?

As a child, I was always very curious about the world around me, this was the driving force that pushed me to learn and study as much as I could. When I got older I realised that in order to understand the world we live in I must study science, because it helps us discover the secrets of our world. I always loved chemistry because of the beautiful reactions that take place and so I chose to pursue chemistry in higher education. I later also understood that chemistry is a field in science that incorporates many other sciences like physics, biology, etc. so that I can continue to expand my knowledge in other scientific areas.

 

Who are your role models?

My role models are all the women who strove over the years to improve science, even when it was a career that was frowned upon for women. I admire their courage and abilities, and how they shaped the scientific world into accepting them as equals and even more. It is because of these women that I am able to freely pursue my goals and ideas, and hopefully improve our world.

in order to understand the world we live in I must study science

How did you get to where you are in your career path?

It took a lot of hard work to get to where I am today in my career. The directions I chose were influenced by my family, who always pushed me to follow my dreams. I am also supported by my supervisor Prof. Arie Zaban, who taught me never to give up even when nothing seems to be working.

 

What is the coolest project you have worked on and why?

I’d like to say that all the projects I worked on are very cool – I love what I do! If I had to choose one project it would be the plasmonic ‘hot’ electron effect I discovered in one of my solar cells. I was examining the effect of one of the layers on the solar cell performance, and as a result I found out that a whole different mechanism governed the photovoltaic behaviour; this was the ‘hot’ electron effect.

 

What’s a time you felt immense pride in yourself/your work?

Whenever I reach a milestone in my work, which could be getting a degree, publishing a paper, etc, I feel very proud and accomplished, mainly because this also means that the people supporting me can also be proud!

 

Hannah_Noa_3

 

What is a “day in the life” of Hannah Noa like?

I usually get to the lab around 8:30 to 9 am and then I see what I have planned for the day. If I need to do some experiments, I make sure I have everything ready and prepared; if I need to analyse data, I make a list of what needs to be done and start working on it. I usually end up helping other people in the lab throughout the day, be it advice or brain-storming about a research project, editing their manuscripts or even helping them perform experiments of their own. Our lab members always eat lunch together, and we usually try to keep it for getting updated with each other. I leave the lab between 5 and 6 pm, and head home to eat dinner and relax. Sometimes I hang out with friends or go to cultural events as well.

 

What are you seeking to accomplish in your career?

I would like to be a better scientist and help improve the planet we live on through the research and work I do. For me, making our world a better place to live in is highly important, and I think that everyone should be treated well and get a chance at living. So for me it is important to improve my skills and as a result all that surrounds me to make the required steps at a better world.

It is because of these women that I am able to freely pursue my goals and ideas, and hopefully improve our world.

What do you like to do when you’re not doing research?

I have many hobbies including playing music, drawing and doing arts. I also like to meet up with my friends and have fun experiences together, like concerts, field trips and even escape rooms.

 

What advice do you have for other women interested in science/chemistry?

My advice to women interested in science and chemistry is not to give up on your dreams! It is hard but it is worth it! Try your best, prove yourself, believe in yourself and in your capabilities, because you are highly capable, and being a woman only brings out the best qualities for being a scientist!

 

 

Hannah_Noa_2

In your opinion, what will be the next great breakthrough in science/chemistry?

This is a great question and it can have many answers. I personally hope the next breakthrough will be in the area of electrical vehicles, finding a better battery that is more stable, cheaper and compact to be used in cars today. I think a breakthrough in this area can move our society forward and help reduce and even eradicate many issues we have with ruining the environment.

 

What should be done to increase the number of female scientists and female professors?

In my opinion, to increase the number of female scientists and professors a few things need to be done:

(1) more scholarships for women in science and research, which will help motivate women to come to these fields

(2) Improve the conditions for women so that they can have families and a career as well, such as having day care in universities until late hours etc.

(3) The various scientific faculties in all the universities should have academic positions intended only for women, to which men cannot apply to at all. This will help increase the number of women professors, who will in turn teach women students. The students will see women professors and they will become motivated themselves since they see that this goal can be achieved, and they will push harder in their scientific fields, to become better and motivate more women to study.

Being a Lecturer in Benin Means Having a Vision, a Clear and Positive Vision of the Future

I am a young Lecturer-Researcher born March 23rd 1988 in Benin, a francophone country in West Africa. My career is therefore based both on lecturing and on scientific research. In terms of lecturing, holding a Bachelor’s degree and a Master’s degree in Biomedical Analysis, I have acquired the skills of a laboratory technician. These knowledges, both theoretical and practical, enabled me to obtain a PhD in Environment and Health Sciences. After a placement at the Polytechnic School of Abomey-Calavi, I conducted educational activities in the Department of Human Biology where I had to teach General Microbiology and Medical Microbiology. Other courses were later put to my charge. These included the teaching of General Microbiology at the Interfaculty Center for Training and Environmental Research for Sustainable Development; Animal Health Experiences at the Faculty of Health and Food Hygiene and Occupational Risk Management at the Faculty of Arts and Humanities.

 

Teaching a session of Medical Microbiology in the Department of Human Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi. Photo: Courtesy of Tamègnon Victorien Dougnon

Teaching a session of Medical Microbiology in the Department of Human Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi. Photo: Courtesy of Tamègnon Victorien Dougnon

 

Being a lecturer in Benin means first of all to be willing to sacrifice one’s personal life for the benefit of students training. I am fortunate to be a biologist trained and recruited in a Polytechnic School. This means that our trainings attract many students. However, we do not really have what it takes to cope with the challenges of time. Initially, the Canadians had helped our school a lot. Over time, the number of students has increased tenfold. I currently teach microbiology to nearly 200 students in the second year of their Bachelor’s degree. Obviously, this is too much. The laboratory has not changed and the equipments are sometimes older than me. My bacteriological oven in the laboratory is almost twenty years old. Supreme sacrifices must therefore be made by forming pedagogical groups and, therefore, repeating the manipulations as many times as possible.

Secondly, education in Benin is currently undergoing major restructuring. As for me, I still have the grace to belong to an institution in which the vision of leaders is the strengthening of an efficient education system in spite of the limited funds. The school team and the Rector of my Institution are constantly undertaking pedagogical training for the lecturers recruited. Moreover, the training modules are daily improved and upgraded to international conditions and standards with the help of a committee set up by the Rectorate. In spite of all these efforts, a tendency to the disappearance of the practical works is to be denoted. The large number of students poses serious problems. This is why we make a lot of requests for donations of equipment and materials in human biology.

 

Students cleaning the laboratory benches before starting my practical courses, Department of Human Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi. Photo: Courtesy of Tamègnon Victorien Dougnon

Students cleaning the laboratory benches before starting my practical courses, Department of Human Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi. Photo: Courtesy of Tamègnon Victorien Dougnon

 

In my field, for example, we do not have a Master’s degree in Medical Microbiology. With my team, I am currently considering the introduction of a special training programme in Molecular Microbiology and Applications (MsC) in order to prepare our students to benefit from thesis scholarships as well as those trained abroad. Finally, being a lecturer in Benin means having a vision, a clear and positive vision of the future, the only one based on the youth very well trained and dynamic.

In terms of research, my research activities can be divided into three main areas:

  • the problems of market gardening and the hygienic quality of foodstuffs
  • applications of microbiological techniques to the resolution of development problems
  • exploration of Benin’s flora for the treatment of infectious and non-communicable diseases

 

Victorien Dougnon in his laboratory reading free staphylocoagulase, an important test in the identification of Staphylococcus aureus. Photo: Courtesy of Tamègnon Victorien Dougnon

Victorien Dougnon in his laboratory reading free staphylocoagulase, an important test in the identification of Staphylococcus aureus. Photo: Courtesy of Tamègnon Victorien Dougnon

The activities of the first research axis were used, in part, to carry out my PhD thesis, whose theme was about a highly consumed vegetable in Benin: Solanum macrocarpon Linn. The study determined medicinal and nutritive properties in the leaves and fruits of this plant. However, the finding was that these vegetables had a defective bacteriological and toxicological quality resulting from the use of poultry droppings as agricultural inputs during growing. This study proposed an alternative that was validated and which consisted in the implementation of an anaerobic biodigestion system based on simple local material. This resulted in a significant reduction of more than 95% in bacterial loads and heavy metal content. The results of this study make an important contribution to protecting the health of the consumer of S. macrocarpon in particular and leafy vegetables in general.

In addition, and within the framework of this first research axis, the sanitary quality of meat carcasses was evaluated by the research and characterisation of Escherichia coli O157, an emerging serotype, feared for its particular virulence. This aspect of the study evaluated the risk of contamination of meat by this species.

After the defense of my thesis in 2013, I was recruited as a permanent Lecturer-Researcher in the Department of Human Biology of the Polytechnic School of Abomey-Calavi. I conduct my research activities in the Research Laboratory in Applied Biology (Polytechnic School of Abomey-Calavi). I also work in the Laboratory of Biology and Molecular Typing in Microbiology, Faculty of Sciences and Techniques, University of Abomey-Calavi.

The second axis allowed me to propose answers to development problems (sanitation, health problems, quality control of foodstuffs and products used in biology). It also allowed me to evaluate some microbiological diagnostic methods for a more efficient management of biomedical laboratories focused on quality results with minimal investment.

As for the third axis, it consisted in the exploration of the Beninese flora for the treatment of diseases. The aim of the works undertaken was to highlight the therapeutic effects, the chemical composition of the plants and the exploration of their level of toxicity.

The work carried out in these different research axes contributed to a better knowledge of the microorganisms responsible for infections in Benin, to improved laboratory practices to optimise various microbiological diagnoses, to improved management of the market gardening sector and awareness of food vendors and to a better knowledge of plant species that can treat bacterial infections and even non-communicable diseases such as hypercholesterolemia.

Being a researcher in Benin is not easy at all. It is true that the Ministry of Higher Education and the Rectorate of the University of Abomey-Calavi are doing a lot of things that show an optimistic vision of the future. I have, for example, received an allowance from my Ministry to conduct my PhD works. Periodically, the Rectorate sets up competitive funds from the University, which contribute to strengthening the technical platform of the laboratories and to train new doctors. However, things remain immense.

In the field of research, the first problem facing Beninese researchers is the language barrier. Doing research in biology nowadays and being able to position itself durably on the world plane, imposes at least the knowledge of the English language. In the face of this, several mechanisms have been put in place. Any candidate for a Master’s degree in Benin must now present a certificate of proficiency in the English language. Secondly, the lack of research funding and equipment remains staggering. I remember that at the beginning of my career, I financed the protocols of my work with my salary. When you have nothing, you have no choice. Most of the research in Benin is done on own funds. Only passion allow you to work in such conditions. I was obliged to carry out my work at the hours of non-attendance of the laboratory by the students. Indeed, it is the same equipment that is used for classical training and research activities. Thanks to God, the World Academy of Sciences (TWAS), since the end of 2016, has alleviated my suffering and that of many colleagues of my Institution, the University of Abomey-Calavi.

 

Victorien Dougnon during a training at the Department of Animal Experimentations, Noguchi Memorial Institute for Medical Research, University of Legon, Accra, Ghana. Photo: Courtesy of Tamègnon Victorien Dougnon

Victorien Dougnon during a training at the Department of Animal Experimentations, Noguchi Memorial Institute for Medical Research, University of Legon, Accra, Ghana. Photo: Courtesy of Tamègnon Victorien Dougnon

 

Thanks to the TWAS-UNESCO, I was able to obtain a substantial donation of equipment to set up and launch a complete unit in Microbiology. I have benefited from a microbiological safety cabinet, a large number of culture media, an autoclave, strain-freezers, refrigerators, trinocular camera microscopes, a bacteriological oven, etc. It was this same funding that allowed me to set up a team of ten young scientists (master and thesis students). These students are mostly women selected on the basis of excellence in their academic studies. The goal is to prepare some dynamic and talented female scientists that can claim international awards in the coming years. This provision even allowed me to win the Leadership Award from the Youth Advisory Body in 2016 in my country. Thanks to the foresight and support of my Rectorate, the acquired equipment will soon be installed and will contribute not only to the practical training of the students but also to the execution of the research protocols without too much difficulty. My work on the efficiency of traditional and aromatic plants is therefore greatly facilitated. I therefore pay tribute to the TWAS, which has had an indelible impact on my career.

Another obstacle that I had to cross and that is, besides, common to many Beninese researchers is the question of publications. Obviously, with limited resources, it is difficult to be able to publish the work in high-impact journals. So we started with some small ones, and that gave us some international evidence of potentiality. Subsequently, we have a lot of collaboration in Tanzania, Ghana, Côte d’Ivoire and worldwide, with the impact of publishing in higher-quality journals. Participation in more than forty scientific events in the field of biology and chemistry has opened up many axes of international cooperation.

#LiNo17 Daily Recap – Monday, 26 June 2017

Yesterday, the scientific programme of the 67th Lindau Nobel Laureate Meeting commenced. It was a fantastic day full of science and exchange – this short recap can only give you a glimpse of everything that happened, but for us the following are our personal highlights!

 

Video of the day:

The first of today´s many inspirational lectures was the one given by Bernard L. Feringa, 2016 Nobel Laureate in Chemistry. He took the young scientist on a journey into the world of molecular switches and motors, the process of discovery and his personal experiences through his scientific career. In particular, he addressed how fundamental questions and molecular beauty have guided him on this journey.

 

Picture of the day:

Nobel Laureate Martin Chalfie enjoys interacting with young scientists.

67th Lindau Nobel Laureate Meeting Chemistry, 25.06.2017 - 30.06.2017, Lindau, Germany, Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings,  Young Scientists in talk with Martin Chalfie

 

 

For even more pictures from the Lindau Nobel Laureate Meetings, past and present, take a look at our Flickr account.

 

Blog post of the day:

Mexico hosted the International Day on Monday. A good reason for us to feature a young scientist from Mexico, Ana Torres, who said: “I urge each woman […] to play an active role in our nation.”

Do take a look at more exciting blog posts.

 

Tweets of the day:

 

Last but not least, follow us on Twitter @lindaunobel and Instagram @lindaunobel and keep an eye out for #LiNo17

 

Over the course of the next five days, we will keep you updated on the 67th Lindau Nobel Laureate Meeting with our daily recaps. The idea behind it is to bring to you the day’s highlights in a blink of an eye. The daily recaps will feature blog posts, photos and videos from the mediatheque.