Women in Research: Apply for That Dream Job, Says #LiNo17 Participant Katherine MacArthur

Interview with young scientist Katherine MacArthur

This interview is part of a series of interviews of the “Women in Research” blog  that features young female scientists participating in the 67th Lindau Nobel Laureate Meeting, to increase the visibility of women in research (more information for and about women in science by “Women in Research” on Facebook and Twitter). Enjoy the interview with Katherine and get inspired.


Photo: Courtesy of Katherine MacArthur

Photo: Courtesy of Katherine MacArthur

Katherine MacArthur, 28, from the United Kingdom is a postdoctoral researcher at the Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Juelich, Germany. In her research, she is trying to push the limits of characterising catalyst nanoparticles in the electron microscope. If we can understand their structure better then we can relate this back to their catalytic properties and try to make better catalysts. Can we really count the atoms and determine their atom type and how does that relate to the particles catalytic properties?


What inspired you to pursue a career in science/chemistry?

I have always been interested in understanding why things work the way they do. I’m very much an applied scientist/engineer. I like to be solving a real world problem. I remember doing a lot of miniature science/craft projects at home with my mother, for example, growing salt crystals, and clay modelling. I would often dismantle things to see how they were made. Physics and chemistry were always my favourite classes in school. I particular liked the chemistry practicals and mixing chemicals together for different results. I think a lot can be said for exceptional school teachers who make the subject engaging as starting point towards a specific career in that subject.

I fully credit my careers adviser at school for helping me choose which science degree to study. She was the first to suggest Materials Science to me as an option. In particular, the course at Oxford University which had a French language option looked the best option. This is because it combined as many of my A-level subjects as possible (at the time these were Maths, Chemistry, French, Product Design and Theatre Studies). Ok, it didn’t containing anything to with Theatre Studies, but all the other four subjects were covered. In an effort to find out more I booked onto a Materials Open Day in Oxford. A day which I thoroughly enjoyed. There was a vast array of practicals which demonstrated simple materials properties, all of which had a real connection to real world problems that thoroughly appealed to my practical mind set.


Who are your role models?

My mother has demonstrated how fruitful life can be juggling a career and family life, she is an inspiration. Otherwise I tend to get small inspirations from many of the people I interact with in my daily life. The variety reminds me that there is no specific route one should take to a permanent position in science. For that reason there is no one person who I can look at a say, ‘I wish I had their career’. Instead, I just look at what aspects of someone’s career I am inspired by.


How did you get to where you are in your career path?

The first hurdle in my scientific career came right at the beginning when I chose Materials Science as the degree I wanted to take but realised they recommend Physics A-level which I did not have. I was very fortunate that my school allowed me to take complete the Physics A-Level in one year by taking 1st year and 2nd year courses in parallel, adjusting the timetable completely so that I was able to manage my new set of courses. I got my offer from Corpus Christi College, Oxford and I got my 3 A’s in Physics, Chemistry and Maths. Later on my College Tutor who interviewed me said he is still yet to accept a candidate without Physics A-level, so it was clearly worth the extra effort. I found Oxford both enriching and immensely challenging at the same time. It is difficult to be in such an environment surrounded by some of the best minds without developing some sort of inferiority complex. You have to learn to re-evaluate what you classify as good results, and keep reminding yourself that just because the people you spend your day to day life with are immensely clever, does not diminish how clever you are. Unfortunately, I developed an illness known as IBS which is made considerably worse by stress, and I completed my final exams on quite a lot of painkillers. Now I manage the condition but it flares up occasionally, e.g. if I have a impending deadline that I’m not ready for.

[…] the idea that it is possible to image individual atoms was simply astounding […]

For my final year masters project I chose to specialise in high resolution electron microscopy, the idea that it is possible to image individual atoms was simply astounding. I spent many, many hours imaging gold nanoparticles after different heat treatments and was enjoying it so much I already knew that I wanted to do a PhD in Microscopy. Although I researched many options I actually ended up reapplying to Oxford. However I did change supervisors in order to work with Professor Peter Nellist (my college Tutor), Dr Sergio Lozano-Perez and Dr Dogan Ozkaya. The project was sponsored Johnson-Matthey and so had an industrial focus on the catalysts which I like as a link to real world applications. My PhD in Oxford was rather different to my undergraduate degree. Having three supervisors meant there were always at least 3 branches of the project I could work on at any one time. I thoroughly enjoyed this aspect particularly as I find it stops me getting too focused and stuck on any one avenue of research. Towards the end of my PhD (some time in my 3rd year) I began to feel a crisis of confidence, I still wanted to be a scientist but I began to feel like I wouldn’t be good enough to have an academic career. I had been jointly working with two or three other people and I began to worry that there wasn’t anything that I could point at as distinctly my contribution. It also didn’t help that I was still the most junior person in the research group as it consisted of me and two postdocs. They both made me feel like research required a real amount of bravado to convince people that your ideas are the best (at least to get successful funding applications). There was a hunger to survive in research which I saw in them that seemed essential for a career in scientific research and which I felt I lacked. I now believe differently, I think you can be a lot quieter and humbler and people will still notice if you have interesting and worthwhile results. After long discussions with all my supervisors (Dogan help in particular because he was able to explain to me why he left academia for industry) I decided to try out a postdocs position before I made my decision about staying in academia or not.

The coolest project is normally whatever I’m working on at the moment.

The place I’m at now (Forschungszentrum Juelich) was actually chosen slightly at random. I’ve heard one of my colleagues describe it as a Venn diagram approach. My husband and I both spoke to our supervisors and sent out a whole lot of emails to find out the availability of postdoc positions in research groups we liked. We each attached the others CV to our emails with a note asking if they knew of any groups in the area which would have a suitable position for our other half. From that I drew up a list of places I liked and he the places he liked. We ended up with a choice of two places in Germany, Juelich-Aachen or Stuttgart-Karlsruhe. Juelich has 5 top end electron microscopes where most places have only one, making it a fantastic hub of research in microscopy. Unfortunately they didn’t have any money to actually employ me but encouraged me to apply for a Helmholtz postdoctoral scholarship, making it the more risky option but would be fantastic if it worked out. Although it was rather nerve-racking at the time, I started in Juelich on a 3 months contract before I found out if my funding was successful or not. Thankfully it was and I’m now in my second year, thoroughly enjoying science again and having just come back from a 2 month research stay in Australia that I never thought I would do two years ago. I even have it in my sights to try and apply for a tenure track position next year.


What is the coolest project you have worked on and why?

The coolest project is normally whatever I’m working on at the moment. I never have the inspiration to work on something unless I think it’s cool. That being said there is one project which has just been written up into a first paper that I think has real potential. Essentially, we were able to determine the 3D atomic structure of Pt nanoparticles from a single experimental image. Being able to determine a structure from one image (normally requiring 20 or more) means we can get the atomic structure of several particles in the time it took to get one, leading to higher throughput. It also means we are damaging the particles less under the electron beam the structures we get will be more accurate.

A simulation group in the University of Southampton has now done some modelling calculations on these structures. This is an important step for several reasons; firstly, it’s never been done before. Prior to this modelling has always been carried out on ‘perfect’ or ‘ideal’ structure with atomically perfect particles in their equilibrium shape. In reality catalyst particles are never going to have ‘perfect’ structures, there will always be kinetic effects in the synthesis or impurities which affect the shape and structure. Therefore to understand real catalysts we need to model real structures. As with most materials science challenges is often the deviations and defects from a perfect crystal structure which actually end of controlling overall materials properties. Therefore being able to characterise and model such defects is essential to understanding exactly what is happening down at the atomic level.


What’s a time you felt immense pride in yourself/your work?

The first time I ever tuned a microscope by myself to resolve atomic columns. I was so excited I took a picture on my phone and sent it straight to my boyfriend. I think it might be a bit like when you’re groping and fumbling around to find your glasses. You finally find them and put them on and can suddenly see everything clearly again. It’s as sudden as this in the microscope and it’s beautiful. I love that moment every single time, when your visibility suddenly improves and you can actually see atoms. I still send my (now) husband a picture if I find a particle that is just too pretty and I have to share it with someone.


What is a “day in the life” of Katherine like?

Photo: Katherine MacArthur

Photo: Courtesy of Katherine MacArthur

I normally get into work 8-8:15. I pour myself a cup of peppermint tea and check my emails. In 90 percent of my days I will spend all day at my computer. Setting up simulations, analysing data taken on a microscope, writing software or reading/writing papers. I normally get a microscope session once every couple of weeks and it takes me that long to understand the images from a previous session. I have a quick packed lunch and then a group of us go out to play Boules if the weather is nice. When I am on the microscope I will work from 8 am through until I get too tired or until I’ve collected everything I think I can get that day. Therefore if the microscope is working well, I have been known stay well until the middle of the night, because the data coming out of the machine is so beautiful. Plus if you are collecting data after normal working hours, there’s normally no-one around to slam doors or run loud machines and carelessly mess up your data.


What are you seeking to accomplish in your career?

I think the way that the scientific community is structured makes it very difficult to have long term goals. My contract only lasts for two more years and each funding application is typically a 3 year timescale. In that time you need to have real results to prove you’ve achieved something which was worth funding. Personally, things have been a little shaken up with the Brexit vote. My husband and I had planned to do 3-4 years in Germany before moving back to the UK. Now I think we are already seeing a drop off in scientific funding options and I think there will be fewer jobs available in research. Therefore we’ve had to come up with a new plan rather quickly. I have a plan to apply for a large 5 year funding grant. If I’m successful with this then my husband and I will be staying in Germany, if we’re not successful then we’ll be looking to move somewhere within the EU. Ideally, I would like to end up in a permanent position linked with a university where I’m also able to do some teaching. I really enjoy sharing my scientific knowledge with other people and really enjoyed my time spent tutoring at Oxford. However, I’m a long way off that just yet so it’s easier to think it short-term goals.


What do you like to do when you’re not doing research?

When I’m not doing research, I’m normally cooking/baking. I normally cook a meal completely from scratch every night. With my IBS I have to avoid ready-made sauces and ready meals. This means I have learned how to make a lot of different things including: currys, pizza, sweet and sour sauce, and various pasta sauces all from scratch. My herb and spice rack is rather extensive for this reason. I find it helps me to relax and unwind from the day I’ve had. Some nights I just throw things into a pan for a quick stir-fry, but other nights (if I have time) I go for something much more complicated. I don’t always have time to cook something extravagant as I have German classes, Bible study and dancing most nights of the week.

I would recommend […] always applying for a position you like the look of even if you worry that you might not fulfill all the criteria.

Of those activities my main passion is the dancing. During my time in Oxford I learned to dance Latin, Ballroom, Salsa, Rock and Roll among others. Now I just limit myself to acrobatic rock and roll twice a week. There’s nothing quite like being thrown upside down to clear your head! Plus I learned during my time in Oxford where the motto is ‘work hard, play hard’ that after a mentally tiring day you sleep an awful lot better if your physically tired as well.


What advice do you have for other women interested in science/chemistry?

As corny as it sounds I would say believe in yourself or find someone who believes in you. Whenever I have a small crisis of confidence or worry that things aren’t going to come together in time, I have a wonderful husband who reminds me of all the things I have achieved and so why would this situation be any different. I would recommend thinking positively and always applying for a position you like the look of even if you worry that you might not fulfill all the criteria. In all my discussion on gender issues and why there aren’t enough women in high ranking positions, there was one statistic that stood out for me. It said that most men will normally apply for a job even if they only fulfill 60 percent of the criteria, whilst most women will wait until they fulfill 100 percent of the criteria before applying for a position. If this statistic is true there are lot of women out there who take themselves out of the running of top jobs by not even applying in the first place.


In your opinion, what will be the next great breakthrough in science/chemistry?

In the field of electron microscopy I think the biggest breakthroughs come through in instrumentation. For chemistry this has come in the form of new holders which allow the in-situ flow of gas or liquids around the sample whilst still being able to image with the electron beam. This is still an expanding area of research and currently has made a lot of pretty videos but is a lot harder to understand the exact processes going on. Getting real catalysts in under microscope in reactive conditions, I think will be essential to really understanding the catalytic process and how to improve it. I think I lot more can be done in terms of quantification. Can we measure the exact ratio of the gases going in and coming out (this is tricky as very small volumes are involved)? Can we track compositional changes with time and understand particle degradation processes? For Fuel-Cell catalysts there has been a lot of success in developing better catalysts than those commercially available, but the problem is over time the particles degrade and activity is lost. We need to understand and prevent these degradation mechanisms in order really achieve more efficient Fuel-Cells.


What should be done to increase the number of female scientists and female professors?

Personally I think it’s still more an issue of cultural expectations than anything else. I don’t think we’ll ever be close to reaching gender equality until it is just as socially acceptable for a man to change his surname after marriage as it is for a woman. Far too many people had an opinion on what I was going to do with my surname when I got married. This was an issue which was entirely mine as it was completely assumed that my husband (also a scientist) would keep his name exactly as it is. It may sound like a trivial thing, but I think about it: scientific achievement is measure by how many papers and citations you have. If you choose to modify your name you need to do it carefully so that all your papers can still be attributed to you. Otherwise you are losing out just because you changed your name.

I don’t think we’ll ever be close to reaching gender equality until it is just as socially acceptable for a man to change his surname after marriage as it is for a woman.

I think the ratio of female to male really drops of during the postdoctoral years. Spending your time on limited 1 or 2-year fixed termed contracts doesn’t really provide a great deal of stability financially. I think women worry about this more, especially if they’re looking to start a family. Also as I said above not enough women are applying for the top end positions, so they may be moving from postdoctoral positions to permanent positions later in their career. In Germany they try to actively combat this issue with positive discrimination. For example, they have a professorship funding option available only to women and some of their lower level funding specifies that at least 40 percent of the awards will be given to women. I still haven’t decided if I agree with this practice or not, but if it does succeed in encouraging more women to apply then it could be a good approach. However, it might leave some people believing they only got the position in order to ‘fill a quota’.

“Persistence” – #LiNo17 participant Karen Stroobants’ key to success

Interview with young scientist Karen Stroobants

This is the beginning of a new series of interviews of the “Women in Research” blog  that will feature young female scientists participating in the 67th Lindau Nobel Laureate Meeting, to increase the visibility of women in research (more information for and about women in science by “Women in Research” on Facebook and Twitter). Enjoy the interview with Karen and get inspired.


Photo: Courtesy of Karen Stroobants

Photo: Courtesy of Karen Stroobants

Karen Stroobants, 29, from Belgium is a Postdoc at the University of Cambridge, UK and one of the young scientists that will participate in the 67th Lindau Nobel Laureate Meeting dedicated to Chemistry. Karen’s current group has established that membrane proteins of mitochondria, the powerhouses of our cells, are likely to play a role in the pathways of neurodegenerative conditions such as Alzheimer’s disease. She is investigating the misfolding behaviour of such proteins, and the way the cell responds to it, with the goal to identify potential new targets for therapeutic purposes.


What inspired you to pursue a career in science/chemistry?

I always had an interest in science, and biology in particular as it was more accessible as a kid (I had a toy microscope and ‘devised’ a cardboard box to take ‘röntgen’ scans of my stuffed toys). I however only realised I would pursue a career in science when I had my first lessons in chemistry, in the third year of secondary school. Studying chemistry throughout high school was very playful and enjoyable for me, and I noticed it wasn’t for everyone. I helped out several classmates with revising before tests, and I felt I had identified a strength that could well be worth further pursuing. Four years later, I started my bachelor in chemistry with the same enthusiasm and I have never regretted that choice since.


Who are your role models?

One of the key moments in high school that without doubt has further supported my interest and enthusiasm in chemistry was the class that thought us about the discoveries of Marie Skłodowska-Curie. I have been intrigued by her life path and accomplishments from the first time I heard about her, and she remains my most important role model today.

I further have encountered amazing women along the way. Important role models to me are Professor Tatjana Parac-Vogt, my PhD supervisor, who is an amazing chemist and has shown me that there is no need to adapt to male behavior to pursue a career in science, Professor Dame Athene Donald, the Master of Churchill College (where I am a By-fellow), who is not only a brilliant physicist but also has a profound interest in science policy and Professor Dame Carol Robinson, who became the first female chemistry Professor both in Cambridge and Oxford, after having taken an eight year career break to take care of her children.


How did you get to where you are in your career path?

The key word in my career so far is ‘persistence’. I have always had goals in mind, and I have worked very hard to reach them. I knew that I wanted to go for a Master in chemistry from the third year of secondary school, that I wanted to do a PhD from the second year at university and that I wanted to do a post-doc in the lab of Professor Chris Dobson at the University of Cambridge from the third year of my PhD. Once my mind is set on something, I work towards that goal.

I have been very lucky to always receive the full support of my parents, who have financed my full education, from primary school all the way to university. When I decided to do a PhD, I immediately received support from Professor Tatjana Parac-Vogt, who also was the supervisor of my master thesis. Tanja encouraged me to write a proposal for the Research Foundation Flanders (FWO), and, with her help, I received a fellowship before even finishing my master. During the PhD, I collaborated with a group at ULB in Brussels, where I met a former post-doc of the Dobson group. She gave me the support I needed to grasp this potential opportunity. I sent at least five e-mails to Chris before I received an invitation for an interview in Cambridge. When I pointed this out to him later, his response was to the point: ‘Persistence is a good quality in a scientist.’ Fair enough :-).


What is the coolest project you have worked on and why?

I would say it is my current one. Over the past seven years, I have worked in the fields of cardiovascular disease detection (during my Bachelor), artificial enzyme development (during my Master and PhD) and neurodegeneration (now, as a post-doc). The common denominator has been my expertise in spectroscopy and other biophysical techniques, whereas the topics and applications have spanned fundamental chemistry as well as the life sciences. My current project is on the role of mitochondria, mitochondrial proteins in particular in neurodegenerative diseases. One could say that I have moved away somewhat from the basic chemistry I studied towards biochemistry and the border with biology even. Maybe I have touched ground again with the science that had initially sparked my enthusiasm as a kid? My drive for this project surely further is related to the stories my mum used to bring home. She works with people with dementia; some of the situations she encounters are devastating. I aspire to contribute to the establishment of effective therapies for these conditions in some way.


Photo: Courtesy of Karen Stroobants

Photo: Courtesy of Karen Stroobants

When have you felt immense pride in yourself/your work?

There are two moments of extreme pride that I can point out without hesitation. The first one is my public PhD defence. This final presentation in Belgium goes hand in hand with a public event where family and friends are invited and it was one of the best days in my career so far. One of the reasons is without doubt the festive element to it, but, more importantly, it marks the successful finalisation of several years of, sometimes very exciting, sometimes quite frustrating, hard work.

The second moment was the day I was informed by the European Commission that I had successfully secured a Marie Skłodowska-Curie post-doctoral Fellowship. I had compiled my first application for this prestigious fellowship that is associated with the legacy of my ultimate role model, two years earlier, but had failed to secure it in this round. I tried again one year later, taking on board the feedback I received, and my persistence allowed me to reach another goal. The research proposal I had put forward to secure the grant has meanwhile brought me to Warsaw in Poland, the birthplace of Marie Skłodowska-Curie.


What is a “day in the life” of Karen like?

I try to be at the department around 8.30 (although I probably arrive at 9.00 as often), and usually know what to start on in the lab. At the moment I am working with S. cerevisiae or baker’s yeast cells, and their growth and needs in part define my schedule. Today I got in and immediately checked how they had been growing overnight. It was a good day, they had behaved as expected and I could start my experiment. I added a compound in their nutrient solution to initiate the production of a specific protein, and let them grow for another few hours. In the meantime, I prepared a discussion on model organisms in neurodegeneration for the day after, and skimmed through my e-mails. At this point, I was the one craving nutrients, so I texted my colleagues to go for lunch.

After lunch, my yeast cells were ready to be harvested, by spinning them down at a high speed. The procedure to do so, and collect them in batches relevant to my experiment, took me most of the afternoon. In between, I planned out the experimental work for the next day, and prepared the necessary solutions and yeast cell cultures to get going again in the morning. Before going home, I usually have another look at my inbox and take time to answer e-mails that I had just skimmed over earlier in the day. In the evening, I either spend most of my time in the kitchen, or go for a gym session or run along the river Cam (in which case my lovely housemate Lily Chan provides dinner). My runs are not entirely science free, as they usually allow my mind to drift and come up with new ideas, some better than others admittedly.


What are you seeking to accomplish in your career?

While my current project has again sparked my enthusiasm for the science itself, and is at a stage where new ideas pop up during every run, I have for a while now played with the idea of leaving the path of an academic for a full-time career in science policy. Where I have in every previous step known well in advance what I wanted to do, this is probably the first time that I am not so sure…

As a scientist, my research has brought me to the study of our energy production pathways and the organelles related to it in the context of neurodegeneration. Would I be happy to further expand my knowledge in this direction, and push the border of our understanding through my own ideas? I certainly would, and I know I enjoy supervising students, editing articles, writing grant proposals and teaching as well.

As a science communicator, I feel the science community has a lot to learn in terms of effective communication, with policy makers, industry as well as the general public. Would I find as much satisfaction in taking up a role either as policy advisor, in a learned society, or supporting researchers in their communication strategy? I probably would, in fact there is only one way to find out…

And there are even more careers to consider. With the right balance between science and policy initiatives, I keep my options open for now. The future will tell.


What do you like to do when you’re not doing research?

I have already mentioned my pleasure in cooking and exercising on week evenings. Whereas my runs often stimulate my brain to wonder about new ideas, cooking for me is the ultimate form of relaxation. While I work with my hands, my mind is completely distracted, or rather fully occupied with assessing the type of pasta to go with a specific sauce or the quality of the seasoning.

One evening a week, and part of my weekends, is devoted to extracurricular endeavours, mostly related to science communication and science policy. I am currently Head of workshops for the Cambridge University Science Policy Exchange initiative, an organization that aims to provide insight into the process of policy design and portray the communication difficulties commonly experienced during science-policy exchanges to fellow University staff. I further am involved in the Global Shapers Hub in Cambridge, the policy work group of the Marie Curie Alumni Association, and the policy challenges initiative of the Cambridgeshire County Council. These initiatives indeed take up some of the time that I could otherwise further spend on my science. I however hope that these efforts will be as valuable as they might contribute to re-installing the importance of evidence-advised policy in a world currently ruled by ‘alternative facts’.


Photo: Courtesy of Karen Stroobants

Photo: Courtesy of Karen Stroobants

What advice do you have for other women interested in science/chemistry?

My most important piece of advice to anyone pursuing a career in science would be: ‘Be persistent’. This probably is applicable much broader, for reaching life goals in general. I do believe this characteristic has brought me where I am now, and where I anticipated being a few years ago.

For women more specifically, I have two more pieces of advice. First, do not underestimate yourself. There are plenty of studies showing that while men tend to overestimate themselves, women tend to do the opposite. Just remembering this basic fact does encourage me to present myself more confidently and I am sure this has made the difference at a number of occasions.

Second, define your own work-life balance and communicate clearly about it to superiors. Scientists are in general very passionate about what they do, which can result in a seemingly endless enthusiasm to work long hours, weekends and bank holidays. If one enjoys this, that is perfectly fine, however, I felt very early in my career that I need time to go for a run, meet with a friend, go on a weekend away, all on a regular basis. In addition, I have committed to spend part of my time to science policy initiatives. Of course I have an occasional late night or weekend in the lab, but I make a point of taking very conscious decisions on how I want to spend my ‘out-of-office-hours’ time, as I realise how precious it is.


In your opinion, what will be the next great breakthrough in science/chemistry?

The hardest question last :-). I imagine I would answer this question differently on a day-to-day basis depending on what I just read, or what occupies me at the moment. I think very generally in science, we, the human race, have a number of huge issues to address, including growing inequality, climate change, and healthcare. I believe breakthroughs can be expected in the fields of renewable energy and antibiotic resistance fairly soon. The fight against inequality is a different matter. Social scientists are certainly delivering evidence for the expected success of a basic income for everyone, but I fear we will have to wait longer for the practical implementation of such solutions.

In my own field, I feel great progress is being made as an accumulation of a vast amount of ‘small steps’. The brain remains one of, if not the most complex organ to understand. I always feel entertained by this irony: ‘Will the human brain ever be able to fully understand its own complexity?’ Although I obviously cannot answer this question, I do feel we are answering one small question at a time, and continuously move closer to that anticipated understanding. Both in terms of fundamental processes, and disease mechanisms, great work is being done, and I expect this to lead to breakthroughs in the field within the next decade.


What should be done to increase the number of female scientists and female professors?

Although a lot of programs have been set up within institutions and universities to address the gender imbalance in academia specifically, I believe more general societal changes will have a larger impact. First, I believe most governments still underestimate the key role of teachers, from kinder garden to university, in shaping individuals and with it the next generation and its thinking. Good teachers, that share their interest in the world around them and are accessible for all children, are of vital importance to motivate youngsters to take up studies in the sciences. Female teachers, as role models, in addition can further stimulate girls in particular to see the feasibility of pursuing a STEM career.

Second, changes that contribute to a more gender balanced society more generally will result in an increased number of female scientists. The girl – boy mentality gets fed to our children from a very early age, with gender specific toys, activities and behaviour. I believe there are huge opportunities for behavioural scientists to address many of these issues. One example I immediately think of in later life is the issue of parental leave. It has been proven that allocating part of this leave to the male parent by default would have profound effects on the work-life balance of both parents in the long-term. Many more recommendations in this respect are out there already, waiting to be implemented.

Sporty Science: Activities for Young Scientists at #LiNo17

Physical exercise makes your brain work better – evidence-based fact. Besides, it is known to have a splendid social aspect that brings together people of all kinds. Enough reasons for us to get active this year!


Morning Workouts

For the first time ever, we will offer sports activities for young scientists in the mornings of the 67th Lindau Nobel Laureate Meeting dedicated to chemistry. From Monday to Thursday, young scientists may join a 45-minute workout from 7.00–7.45 a.m.
To ensure that there will be something for everyone, we plan to have four different sports activities – from cardio-workouts to more relaxing formats.


Sports activities at the Lindau Meeting. Photo: iStock.com/ FatCamera


Preparation for the Day

This new highlight in the meeting programme offers young scientists the chance to get to know each other in an informal setting.
Along the way, they can enjoy the beautiful surroundings of Lindau Island: Lake Constance and the Swiss and Austrian Alps on its southern shores. The morning sports are a great way to prepare for the day’s lectures, panel discussions as well as all the other thought-provoking activities of this year’s programme.



Lindau Island in Lake Constance. Photo: Lindau Nobel Laureate Meetings


All selected participants of the 67th Lindau Nobel Laureate Meeting may register for the sports activities as part of the Session Registration in mid-May.

We are very much looking forward to it!

Exploring the Connections Between Sports and Science with Kurt Wüthrich

When reading the biography of Nobel Laureate Kurt Wüthrich, it quickly becomes clear that he embodies the concept of a Renaissance man. Not only did he excel in academic work, winning the 2002 Nobel Prize in Chemistry for his advancement of nuclear magnetic resonance spectroscopy, but Wüthrich was also an avid sportsman.

As a young man attending the University of Basel, he worked towards degrees in both chemistry and sports — the latter requiring about 25 hours per week of intense physical exercise, as well as courses in human anatomy and physiology. Even though he chose science in the end, sports continued to play an important role in Wüthrich’s life. He enjoyed skiing, fishing, and even played in a competitive soccer league well beyond the age of 50.

Kurt Wüthrich speaking at #LiNo16

Kurt Wüthrich speaking at #LiNo16. Photo: Ch. Flemming/Lindau Nobel Laureate Meetings

Given his interdisciplinary background, it came as no surprise that much of his master class at the 66th Lindau Nobel Laureate Meeting focused on the science of sports. In fact, two young scientists who gave talks at the master class — Dominique Gisin and Bettina Heim — have been blessed with a similar combination of both mental and physical talents as Wüthrich himself.

Dominique Gisin, currently a Bachelor’s student in physics at ETH Zürich in Switzerland, spoke about the mechanics of alpine skiing and its impact on the human body. Gisin started her degree at the University of Basel but interrupted coursework to concentrate on skiing, making her Alpine Ski World Cup debut in 2005. Four years later, she got her first World Cup victory in women’s downhill skiing, and at the 2014 Sochi Winter Olympics, nabbed a gold medal in the same event.

To start off her talk, she played a series of video clips depicting the many crashes and falls she has suffered throughout her storied career, as the audience winced. In an average year, about 35% of all alpine athletes are injured — Gisin herself has gone through knee surgery a whopping nine times as a result of injuries.

In terms of physics, the variables that matter when it comes to modeling the dynamics of a downhill skier are numerous: the mass of the athlete, her velocity, the radius of a turn, snow temperature, air temperature, course condition, the mechanical characteristics of the equipment, visibility, and the mental/physical state of the athlete. These factors need to be considered when thinking about how to lower the rate of injury for the sport.

For instance, a tighter course setting would help reduce the athlete’s velocity, which could make crashes and falls less dangerous. But as Gisin notes, such a change would also cause skiers to move closer to the nets and potentially get tangled up in them. Another idea that might be interesting to pursue is uniform “anti-aerodynamic” racing suits that reduce athletes’ velocity and provide increased protection. Also, as seen in other sports, alpine skiing could benefit from the development of better protection equipment such as helmets and back protectors.

Kurt Wüthrich and Bettina Heim at the Rolex Science Breakfast

Kurt Wüthrich and Bettina Heim at the Rolex Science Breakfast. Photo: Ch. Flemming/Lindau Nobel Laureate Meetings

Also representing ETH Zürich at the master class was Bettina Heim, a Master’s candidate in physics with a background in competitive figure skating. Her achievements in the sport include competing at two World Junior Championships, two World Championships, and becoming Swiss national champion in 2011. Only a short time after, Heim decided to hang up her skates and study physics full-time.

Her Bachelor’s studies culminated in a paper published by the prestigious journal Science in 2015, titled “Quantum versus classical annealing of Ising spin glasses.” It shows that evidence of quantum speed-up may depend on how the problem is described, as well as how the optimization routine is implemented. Today, Heim continues her research in the field of quantum computing, mostly in the realm of adiabatic quantum computing and quantum error correction, at ETH Zürich’s Institute of Theoretical Physics.

However, her focus during Wüthrich’s master class remained firmly in the world of sport and not quantum computers — in particular, she discussed the physics behind her specialty of figure skating. For instance, an athlete must gain a lot of speed going into a spin, and then one side of the body has to stop so the other can pass. This translates velocity into rotation, which results in the many types of spin moves performed by figure skaters.

As in downhill skiing, injuries remain prevalent in figure skating despite not being a contact sport. Common injuries for skaters include stress fractures, acute injuries involving tendons or ligaments, and back injuries. Heim noted that back injuries often originate from jump impacts (which can be hard on the spinal discs) and extreme positions that require flexibility (tough on muscles and ligaments).

As Wüthrich’s fascinating master class reiterated, the connections between sports and science go way beyond the physics of motion. Sometimes, an athlete and a scientist can be found within the same person.

Life in Super-Resolution: Light Microscopy Beyond the Diffraction Limit

In 1979, South African Allan M. Cormack won the Nobel Prize in Physiology or Medicine for his development of X-ray computed assisted tomography (CT), which allows physicians to see internal bodily structures without cutting. A quarter of a century later, Sir Peter Mansfield of the United Kingdom was given the same award in 2003 for advances in magnetic resonance imaging (MRI) that led to scans taking seconds rather than hours.

Today, these two imaging techniques serve as essential diagnostic and investigative tools for both medicine and the life sciences. But one unique fact about Cormack and Mansfield stands out: Despite winning the most prestigious award in medicine, neither Laureate went to medical school nor had a background in biology — rather, they were both true-blue physicists.

Cormack spent most of his research career focusing on nuclear and particle physics, while his CT efforts remained an intermittent side project for almost two decades. For Mansfield, his postdoctoral work on nuclear magnetic resonance spectroscopy in doped metals gradually transitioned into scanning his first live human subject with the newly invented MRI technique.

The tradition of physicists driving advances in biomedical imaging continues, as made evident by the lectures of Steven Chu and Stefan Hell at the 66th Lindau Nobel Laureate Meeting. Both showed visually stunning examples of their research using super-resolution microscopy, a method that transcends the diffraction limit of conventional light microscopes to probe on a nanoscopic scale.


Stefan Hell in discussion with young scientists at #LiNo16. Photo: Ch. Flemming/Lindau Nobel Laureate Meetings

“We learn in school that the resolution of a light microscope is fundamentally limited by diffraction to about half the wavelength of light,” said Hell, who gave his lecture on Thursday morning. “And if you want to see smaller things, you have to resort of course to electron microscopy.”

Hell, a physicist who currently serves as a director of the Max Planck Institute for Biophysical Chemistry in Germany, accomplished what was long thought to be the impossible. Using light microscopy and fluorescent labeling of molecules, he invented a super-resolution technique called stimulated emission depletion (STED) microscopy — the work that won him the 2014 Nobel Prize in Chemistry.

“The development of STED microscopy showed that there is physics in this world that allows you to overcome this diffraction barrier,” he said. “If you play out that physics in a clever way, you can see features that are much finer and details that are beyond the diffraction barrier.”

A conventional microscope cannot distinguish objects — say, molecules — that are packed within a space of about 200 nanometers because they all become flooded with light at the same time. Subsequently, a detector will simply record the scattering as a blurry blob of light without being able to image any individual molecules.

Hell got the idea of highlighting one molecule at a time by using fluorescent labeling, while also keeping other molecules in a dark state through stimulated emission. With a phase modulator, he could then force molecules in a doughnut-shaped area to stay dark and in the ground state while those in the center would produce light.

With this discovery, biomedical researchers could now image objects as tiny as proteins on the outside of a virus. For instance, STED microscopy was used to observe a major difference in envelope protein distribution that can be used to distinguish mature HIV that can infect cells versus those immature viruses that cannot.

“The misconception was that people thought that microscopy resolution was just about waves, but it’s not — microscopy resolution is about waves and states,” Hell emphasized. “And if you see it through the eyes of the opportunities of the states, the light microscope becomes very, very powerful.”

Steven Chu referenced Hell’s groundbreaking research during his lecture on Wednesday morning, which focused on his recent efforts in optical microscopy — quite a departure from his previous work in energy during a decade-long sabbatical.

“I sat down fresh out of government with no lab, no students, no postdocs, no money,” said Chu, who served as U.S. Secretary of Energy from 2009 to 2013. “The only thing that I could do was think, and that turns out to be liberating.”


Steven Chu during his lecture. Photo: Ch. Flemming/Lindau Nobel Laureate Meetings

A venerable jack-of-all-trades, Chu received the 1997 Nobel Prize in Physics in yet another field — atomic physics — for his development of laser cooling and trapping techniques. His latest interest in microscopy grew out of a fascination with cell signaling and how dysfunctions in the process can lead to cancer.

“If you’re a cell embedded in an organism’s tissue, you don’t willy-nilly divide — that’s considered very antisocial behavior. You divide when the surrounding tissue says it’s okay to divide,” he described. “But if you willy-nilly divide and say ‘me-me-me,’ that is called cancer.”

Using imaging techniques, the cell signaling pathway can be investigated in detail to target areas that could prevent cancer from developing. Taking Hell’s work in super-resolution microscopy a step further, Chu discussed his use of rare earths embedded in nanocrystals to replace fluorescent organic dyes. A nanocrystal can be doped with 5,000 to 10,000 impurities so it emits a certain color in the near-infrared with a very narrow spectral peak. If each class of nanoparticle is synthesized to produce a different ratio of colors, this creates a spectral barcoding of probes.

The next step is to use nanoparticle probes to image molecules through tissue in a living organism without cutting. Adaptive optics — a technique that originated in astronomy — has been employed in order to take light scattering into account, enabling high-resolution microscopy of mouse brain tissue through an intact skull.

“The question is if you go deeper into the infrared, can you look not through 500 microns but maybe 5 millimeters?” said Chu. “This is an open question we’re working on this. We’ve gotten down to a millimeter but we’ll see.”

One of his ideas involves inserting nanoparticles into cancer cells and watch them over time in order to track which cells metastasize, with the ultimate goal of developing future therapies.

Smartphones, Energy-Efficient Lamps, and GPS: How Nobel Laureates’ Work Impacts Today’s Technology

Particle physics and cosmology make up the big topics of interest for many young scientists at the 66th Lindau Nobel Laureate Meeting, with lectures by the pioneering researchers who won Nobel Prizes for their work in the cosmic microwave background radiation, neutrino mass, and the accelerating expansion of the universe. These fields embody the inquisitive and fundamental nature of physics as a discipline driven purely by a curiosity about what makes the world tick.

However, let’s not forget about the importance of more applied topics in physics, such as research in semiconductors, optics, medical physics, and nanotechnology. Physicists in these fields have contributed to groundbreaking developments in technology that impact not only society as a whole, but often affect our individual lives on a day-to-day basis.

Their work often teeters on the fuzzy border between science and engineering — a place Nobel Laureate Hiroshi Amano remains very familiar with. As one of the inventors of the once-elusive blue LED, Amano had a direct hand in the realization of full-color displays that grace our beloved smartphones, as well as the energy-efficient LED lighting quickly replacing incandescent and fluorescent bulbs.

“First of all, I’d like to mention that I’m not a physicist — I belong to the engineering department. So today, I’d like to emphasize the importance of not only the science but also the engineering,” said Amano, who kicked off the meeting’s Nobel Laureate lectures on Monday morning. “Maybe my field is not the major in this meeting, so I’d like to mention the importance of the minority.”



Hiroshi Amano during his lecture. Photo: J. Nimke/Lindau Nobel Laureate Meeting

Amano began his lecture by describing his poor academic performance from primary school to high school. Since it seemed to him that the only reason to study hard in Japan was to get into a good high school or university, he lacked sufficient motivation. A former professor changed this mindset by describing the purpose of engineering as a discipline that connects and supports the people. From that moment on, Amano had no trouble finding the inner drive to study hard.

Despite his title as a Professor in the Department of Engineering and Computer Science at Nagoya University in Japan, Amano won the 2014 Nobel Prize in Physics along with Isamu Akasaki and Shuji Nakamura for the invention of high-brightness blue light-emitting diodes (LEDs). For three decades, the creation of a commercially viable blue LED remained a slow-going and difficult endeavor for researchers despite the previous success of red and green LEDs.

“Unfortunately, all the efforts in the 1970s failed,” said Amano, citing issues with growing crystals in the material of choice for blue LEDs, gallium nitride, as well as creating p-type layers. “So many, many researchers abandoned this material and started the new material research such as zinc selenide. Only one person could not abandon this material: my supervisor, Isamu Akasaki.”

In 1985, Akasaki and Amano successfully created their own crystal growth system by using a buffer layer of low-temperature-deposited aluminum nitride that sat between the gallium nitride and sapphire substrate. After a few more tweaks involving the p-type layer, the two presented the world’s first high-brightness blue LED in 1992.

The flashy new blue LEDs could now be combined with their classic red and green counterparts to produce full-color displays for smartphones, computer screens, and televisions. Energy-efficient and long-lasting lightbulbs that emit white light use blue LEDs along with yellow phosphor, and have already started to replace incandescent and fluorescent lighting around the world. By year 2020, the total electricity consumption in Japan could drop about 7% by swapping existing lamp systems to LEDs — a savings of 1 trillion Japanese yen.

Outside of cosmology and particle physics, another fundamental field of physics lies in studying the strange and often paradoxical quantum world. Many quantum phenomena were thought to exist only in a theorist’s mind, since direct experimental observation would destroy the individual quantum systems.

However, the work of Nobel Laureate David Wineland proved otherwise. In 2012, Wineland and Serge Haroche shared the Nobel Prize in Physics for their independent discovery of experimental methods that enable the measurement and manipulation of individual particles without destroying their quantum-mechanical nature. His research has enabled the creation of extremely precise atomic clocks, with more than 100-fold greater precision than the cesium-based clocks in standard use.



David Wineland

“Certainly one of the applications of precise clocks over many centuries has been in navigation, and that’s still true today,” said Wineland during his lecture on Tuesday morning. “One system we take for granted is the [Global Positioning System (GPS)].”

Signals from satellites orbiting the Earth transmit their position and current time, which are then picked up by a GPS receiver. Given that the signals travel at the speed of light, the calculated time delays between the clocks of multiple satellites and those on the ground can be used to pinpoint the GPS receiver’s location on the surface of the Earth.

“There can be errors in the clocks, so for example if the clocks are synchronized to the nanosecond, then that gives an uncertainty of about 30 centimeters,” he said.

The standard atomic clocks in satellites today use an electronic transition frequency in the microwave range as a periodic event generator or frequency reference. Earlier examples of periodic event generators include the rotation of the Earth and the swing of a pendulum.

As Group Leader of the Ion Storage Group at the National Institute of Standards and Technology (NIST) in the U.S., Wineland began working on building a better clock in 1979 when he started to do experiments with atomic ions. The group trapped beryllium ions by surrounding them with electric fields and used tuned laser pulses to put the ions in a superposition state, or a simultaneous existence of two different energy states. A single ion trapped in this way could also be used to create an optical clock, based on optical rather than microwave transitions.

An optical clock’s precision can be better than one part in 10^17 — meaning that if you started the clock at the time of the Big Bang 14 billion years ago, it would only be off by about 5 seconds.

At the end of his lecture, Wineland described using his clocks for navigation at a scale of less than one centimeter. Not only would GPS calculations become much more accurate, but such clocks could even measure the dynamics of relative locations on Earth for earthquake prediction.

Final Preparations: Lindau calling! (2016)

In just a few days, Lindau’s Stadttheater (= city theatre) will open its doors to a week full of science and inspirational exchange and education. We, the team of organisers, are very much looking forward to having this incredible number of bright minds here, on our small island.

By now, you’ve probably gone through the numerous different phases of preparation, perhaps even packing. So here we are, about to give you some last minute guidance and lists for repacking your gear.


The Programme

Perhaps you’ve already gotten around to check this year’s meeting programme. If not, don’t worry – here’s the link to the full programme booklet.


Getting here

Actually, it does make sense to start from scratch. As there will not be any shuttle buses to Lindau that are organised by us, you will have to organise your trip to Lindau all by yourself.

Most likely, you’ll be arriving in Lindau by train. All airports you might be flying into offer connections to “Lindau Hbf” (the train station to head to) via train. You can either buy a ticket at the train stations or via www.bahn.com. You have arrived in Lindau as soon as you see water to your left, to your right and in front on you. Welcome to Lake Constance.



In order to take advantage of everything Lindau has to offer, you need to register with us and get your conference materials. Upon you will receive your name badge that indicates to our staff which events you will attend, your personal agenda, the final programme and more.

Registration will take place in a small tent in front of this year’s meeting venue Stadttheater (Address: Fischergasse 37, 88131 Lindau) and open on Saturday, 25 June from 3:00 p.m. till 6:00 p.m and Sunday, 26 June from 10:00 a.m. until 8:00 p.m. Please note that you will have to show a valid ID at the registration desk.


Everything else you need to know

The opening ceremony starts on Sunday at 4:00 p.m. , the Stadttheater will open its doors at 3:00 p.m. For security reasons it is not allowed to bring any large bags. For your convenience, there is a depository truck where your luggage will be securely stored just outside the Stadttheater next to the internet tent. You will have to have your name badge and valid ID-card with you for access.

For a google Map with all the important places in Lindau, please click here (or check the meeting app):



What to Bring & What to Wear

There is no dress code for the regular scientific sessions. For invitational dinners, you may want to bring something more festive (suits, cocktail dresses). As the lake is great for swimming, you may want to bring swim wear. Some of the local swimming pools even offer free entrance for the participants of the Lindau Meeting. Sunscreen and mosquito repellents are a good idea as well.

Make sure to bring comfortable shoes that are suitable for cobblestone pavement or various weather conditions. A hairdryer as well as a voltage converter (220 volt) or adapter may be useful as German socket-outlets vary from those abroad.

Over the last years one of the events has become particularly popular among all participants: The “Bavarian Evening” hosted by the Free State of Bavaria. For this, it is a great idea to wear a traditional festive costume from your home country. Those of you who own a traditional Bavarian costume (a Dirndl dress for women and Lederhosen for men) are more than welcome to wear that instead.


Internet & Phones

There is an internet café with work stations at the meeting. In addition, the meeting venue is equipped with wireless LAN (WiFi). Please check your conference for the log-in credentials.

It’s always helpful if you bring along your mobile phone so that we will be able to contact you easily. To use a mobile phone in a German network, it needs to support the GSM standard (used all over Europe). The German country code is +49.



The currency used in Germany and many European countries (except Switzerland) is the Euro. Money can be exchanged at airports or at local banks. Credit cards (e.g. Visa, Mastercard) and Maestro/EC cards can be used to withdraw money from ATMs (called “Geldautomaten”) using your PIN. Please check the map to see where to find the nearest ATMs. Cheques and traveller cheques have become rather uncommon and are hardly accepted anywhere.



Please note that our staff is not authorised to hand out any medication. In case of an emergency at the main meeting venue, please contact the staff. A paramedic team is present at the meeting venue and can help with all health related issues. If you have an emergency at a different location, please either contact any of the staff if present, or call 112, the official emergency number that will work in all the EU countries and in Switzerland. During the meeting, you will be covered by a health insurance policy provided by the organisers.


The Meeting App

For the first time, there will be a conference app avilable at this year’s Lindau Meeting. All the information from this post can also be found in there (…and more!). For an in-depth explanation on how to get started with the app, please to refer to my colleague Vincenzo’s guide.


Last but not least

If you want to get a taste of the “Lindau spirit” prior to the meeting, we invite you to take a look at our Facebook page or follow us on twitter @lindaunobel. Throughout the week of the meeting, we will try to post as much intersting content as possible via #LiNo16, this year’s official hashtag. Do join the conversation – we’d be happy!

My colleagues and I will be happy to assist you at the Young Scientist Help Desk should you have any questions. It is going to be a great week, so let’s make the most of it!

And finally, if you haven’t seen them yet, take a look at our new bags, which will soon be yours ;-)

Nadine, Nesrin and Karen - always there to help you out during your time in Lindau!

Nadine, Nesrin and Karen – always there to help you out during your time in Lindau!

#LiNo16: How to make a big conference greener, cleaner and more sustainable

Simplified, it’s the job of our meeting participants – Nobel Laureates and young scientists alike – to make the world a better place through science. We, the organisers of the Lindau Nobel Laureate Meetings, strive to contribute a tiny bit to the success of their quest: We bring researchers together, facilitate an exchange of ideas and encourage them to form international networks. But is this all we can contribute? Enough to pat ourselves on the back? We don’t think so!

Maybe it’s not the first thing that comes to mind when you think about meetings and conferences, but these events often leave colossal carbon footprints. Think about the CO2-emissions of hundreds (for really big conferences even thousands) of people that travel by car or plane, think about a sea of mostly plastic trash, think about countless pages of printed out conference materials. Worrisome, right? And these are only some of the more obvious, ecological aspects.

“In many lectures and discussions Nobel Laureates like Christian de Duve, Mario Molina, Brian Schmidt and others emphasised the importance of acting sustainably and responsibly. We therefore see this as an obligation for our work in organising the meetings,” says Wolfgang Huang, Managing Director of the Executive Secretariat of the Lindau Nobel Laureate Meetings. That’s why several years ago the idea of “green conferencing” became a new focus of attention during the planning of the annual Lindau Nobel Laureate Meetings.


Lindau Harbor - a sight to behold, not only for our feathered friends. Photo: iStock.com/Mor65

Lindau Harbour – a sight to behold, not only for our feathered friends. Photo: iStock.com/Mor65

In order to improve the process of incorporating sustainability aspects into the planning of the meetings, Katja Merx, project manager in Lindau’s conference management, was appointed as officer of sustainability. “To me it was only natural to devote myself to this issue in my working environment, too. I have been following the principle of sustainability for years in my private life, anyway!”, Katja remarks. It’s not all about environmental protection though, according to Katja: “Many people tend to forget that sustainability also includes economic and social aspects – and we’re steadily trying to increase our efforts in these areas, too!”


We review all  measures each year in the early planning phase of a meeting and try constantly to explore further possibilities within the limits of what we can do as a non-profit organisation. So which measures do we actually take in 2016 for the 66th Lindau Nobel Laureate Meeting? Have a look:

  • All electricity used for the meeting is provided by the Lindau municipal utilities who run on  100% green energy
  • Young scientists are free to use Lindau’s public bus system during the meeting week
  • Shuttle Service for the Nobel Laureates partly consists of hybrid cars
  • Meeting bags are produced from sustainable materials
  • Meeting lanyards are produced from materials that are 100% recyclable and no plastic covers are used for the name badges
  • Meeting tents: Flysheets and floor coverings are reusable
  • All tents and venues use energy saving lamps
  • Catering: Regional and seasonal food
  • Local companies are selected for services such as catering, technical support or logistics
  • Young scientists are encouraged to use Atmosfair for their flights (details below!)


If you can’t avoid it, compensate!



An international conference can hardly avoid CO2-emissions caused by air travel of its participants, however, there’s the possibility of making up for that by donating money to climate friendly projects. For this we are partnering with the trusted German NGO Atmosfair. They offer a service that calculates the CO2-emissions generated by your flight as well as the amount of money that should be donated in turn to climate protection projects to equalize these emissions.
If you are thinking about using Atmosfair for your Lindau-flights we would like to ask you to use the embedded form below – this way we will be able to analyze how many of our meeting participants are actually making use of Atmosfair:



We encourage all participating young scientists of our meetings to consider using this service for their travel to and from Lindau. As travel is organised by the young scientists themselves, this is of course absolutely voluntary.

Das Wichtigste? Der Spaß an der Wissenschaft

Wie? Schon vorbei? Ja, leider. Die Zeit verging wie im Fluge. Es war eine anstrengende aber tolle Woche mit inspirierenden Vorträgen und interessanten Gesprächen. Der Blick über den Tellerrand, den dieses interdisziplinäre Treffen mir ermöglichte, stimmt mich zuversichtlich für den wissenschaftlichen Fortschritt, den wir in den nächsten zehn Jahren erwarten dürfen.




Es herrschte eine angenehm offene Atmosphäre. Ich spürte, hier trafen sich über 700 Menschen, die Spaß an der Wissenschaft hatten und gerne darüber sprachen – immer und überall: Im Bus zu meinem Hotel traf ich Maxwell Barffour aus Ghana und sprach mit ihm über die Labordiagnostik von Malaria und HIV in afrikanischen Kleinkindern. Auf der Uferwiese des Bodensees erklärte mir Evans Kataka aus Kenia die wachsende Bedeutung der Bioinformatik in der Krebsforschung. Im Café zeigte mir Viputeshwar Sitaraman aus Indien seine tolle Infografik zur 4Pi-Mikroskopie von Chemienobelpreisträger Stefan Hell. Beim Tretbootfahren wurde ich von Arlette Vyry Wouatsa Nangue aus Kamerun über die Arbeitsbedingungen in den deutschen Laboren befragt. Da kam ich dann leider schnell auf unbezahlte Überstunden, befristete Verträge und Drittmittel zu sprechen.


Foto: A. Schröder/Lindau Nobel Laureate Meetings

Foto: A. Schröder/Lindau Nobel Laureate Meetings


Ich hatte nette Kollegen im Lindauer-Blog-Team, die ich leider viel zu selten sah. Es gab viel zu schreiben und jeder hatte seine persönliche Agenda, da blieb zu wenig Zeit für den Austausch. Ich bin froh Wissenschaftsblogger wie Florian Freistetter (Blog: Astrodicticum Simplex) und Jalees Rehman (Blog: The Next Regeneration) jetzt persönlich kennengelernt zu haben. Lustig war vor allem, dass Jalees und ich im gleichen Hotel wohnten und uns dort nie sahen, obwohl es ziemlich klein war. Klein aber gemütlich ist Lindau und manchmal fühlte ich mich in das Auenland versetzt, das J.R.R. Tolkien im Herrn der Ringe beschreibt. Die Lindauer sind höflich, hilfsbereit und freundlich. Jenseits von Wissenschaft und Blogposts war mein tägliches Highlight die Busfahrt zum Hotel: Mitten durch die Fußgängerzone und die engen Gassen der Altstadt, die keine Auswegmöglichkeiten boten. Das hatte was, vor allem wenn ein Radfahrer vor uns sich alle Zeit der Welt nahm, weil er den Bus nicht bemerkte. Um 22 Uhr fuhr der letzte Bus zu meinem Hotel, meine Idee “Round about Midnight” (Thelonius Monk) noch in einem Lindauer Jazzcafé zu sitzen, gab ich damit auf.




Es gab auch stille nachdenkliche Momente in Lindau: Ich werde nicht vergessen wie Susumu Tonegawa am Ende seiner Vorlesung an seinen, im Februar dieses Jahres verstorbenen, PostDoc Xu Liu aus Shanghai erinnerte. Ich denke wir sollten viel häufiger zu Beginn einer Vorlesung Gedenkminuten für verstorbene Kollegen halten, vor allem wenn die Vorlesung über ein Thema ist an dem der Verstorbene gearbeitet hat.


65th Lindau Nobel Laureate Meeting,


Das Wichtigste was ich von Lindau mitgenommen habe war Oliver Smithies‘ Rat an die Nachwuchswissenschaftler in seinem Vortrag “Where Do Ideas Come from?”:

It’s quite unimportant what you do. Isn’t it? It doesn’t matter what you do to get a PhD. All that matters is that you learn to do good science. But there is a corollary. You have to enjoy it. If you don’t enjoy it, then go to your advisor and say: „I’m not enjoying what I’m doing.” I’m serious, I really mean this. And then if your advisor won’t or can’t give you another problem, change your advisor.


Reflections of Mainau and Lindau: An eternal reminder of a scientist’s social responsibility

If there was a heaven on Earth for scientists, then it would be found in Bavaria in the beautiful town of Lindau. And if motivation on how to effect social change could be bottled up in one location, then it would be on Mainau, the beautiful flower island of the Bernadotte family. Picture: Insel Mainau/Peter Allgaier.

If there was a heaven on Earth for scientists, then it would be found in Bavaria in the beautiful town of Lindau. And if motivation on how to effect social change could be bottled up in one location, then it would be on Mainau, the beautiful flower island of the Bernadotte family. Picture: Insel Mainau/Peter Allgaier.

For us young scientists, this was always going to be the conference that would become the yardstick against which all previous and future meetings would be measured. But if our experiences at Lindau during the week were extraordinary, then the events of Mainau on Friday 3rd July 2015 were truly transcendental.

In spite of (or perhaps because of) the challenging world in which we live, young scientists aspire to keep a healthy balance of idealism and pragmatism. We receive education and training. Along the way, we become involved in research that will potentially improve quality of life or man’s understanding of the world. We hope to make a positive difference to society or another person’s life story, help the next generation, and, in doing so, pay forward the kindness provided to us by our own mentors. In the professional world of a developing scientist, this is the great Circle of Life.

For the young scientists, this week was not just about learning from Nobel Laureates and senior scientists how to perform good science and become successful, but also how one should live when one has become successful. We were taught, through the Laureates’ personal examples, to remain humble, always aiming to respect others and achieve a balanced perspective, while continuing one’s work and striving for the betterment of mankind. Throughout the week, the Nobel Laureates allowed us into their world: they gave us their time, and granted us privileged access to their life stories and thoughts. They also conveyed their hopes and concerns for the future. We heard about the important problems of feeding the ever-growing population of the world, supporting science and scientists in Africa, ending child exploitation and supporting their universal right to education. We learnt the importance of an education in science, the need for scientists to communicate effectively, and how this could help society, as a whole, on so many different levels.


The Nobel Laureates on stage signing the Mainau Declaration 2015 (Harry Kroto). Photo: L. Wang

The Nobel Laureates on stage signing the Mainau Declaration 2015 (Harry Kroto). Photo: L. Wang


But Mainau brought all these ideas to a whole new level. There, the Nobel Laureates provided an eternal reminder of the importance of a scientist’s social responsibility. The vision of the Nobel Laureates signing the Mainau Declaration 2015 is something that I will remember forever – walking onto the stage as a group, holding arms, supporting each other, laughing, chatting, smiling as they each waited their turn to sign. These images remain a powerful illustration of the strength of unity, in purpose and conviction.

I felt enormous pride and admiration as Brian Schmidt stood up as spokesperson for the Mainau Declaration 2015, and the solidarity and unity of all four Australian Nobel laureates as they joined an ever-growing number of Nobel Laureates gathered on stage, many of whom I was privileged to talk to during the course of the week. In terms of inspiring social responsibility, few things can motivate a young scientist more than watching one’s heroes united on stage, participating in a cause important to our future and that of our children.

We left Mainau and Lindau, knowing that we had witnessed history in the making – a declaration that will hopefully help steer humanity in the right direction.

And, having been transformed and inspired by this amazing week, we hope to pay forward the amazing opportunity given to us by the Council for the Lindau Nobel Laureate Meetings and the Nobel Laureates – to dedicate ourselves to science and society, now and forever more.