Exploring the Connections Between Sports and Science with Kurt Wüthrich

When reading the biography of Nobel Laureate Kurt Wüthrich, it quickly becomes clear that he embodies the concept of a Renaissance man. Not only did he excel in academic work, winning the 2002 Nobel Prize in Chemistry for his advancement of nuclear magnetic resonance spectroscopy, but Wüthrich was also an avid sportsman.

As a young man attending the University of Basel, he worked towards degrees in both chemistry and sports — the latter requiring about 25 hours per week of intense physical exercise, as well as courses in human anatomy and physiology. Even though he chose science in the end, sports continued to play an important role in Wüthrich’s life. He enjoyed skiing, fishing, and even played in a competitive soccer league well beyond the age of 50.

Kurt Wüthrich speaking at #LiNo16

Kurt Wüthrich speaking at #LiNo16. Photo: Ch. Flemming/Lindau Nobel Laureate Meetings

Given his interdisciplinary background, it came as no surprise that much of his master class at the 66th Lindau Nobel Laureate Meeting focused on the science of sports. In fact, two young scientists who gave talks at the master class — Dominique Gisin and Bettina Heim — have been blessed with a similar combination of both mental and physical talents as Wüthrich himself.

Dominique Gisin, currently a Bachelor’s student in physics at ETH Zürich in Switzerland, spoke about the mechanics of alpine skiing and its impact on the human body. Gisin started her degree at the University of Basel but interrupted coursework to concentrate on skiing, making her Alpine Ski World Cup debut in 2005. Four years later, she got her first World Cup victory in women’s downhill skiing, and at the 2014 Sochi Winter Olympics, nabbed a gold medal in the same event.

To start off her talk, she played a series of video clips depicting the many crashes and falls she has suffered throughout her storied career, as the audience winced. In an average year, about 35% of all alpine athletes are injured — Gisin herself has gone through knee surgery a whopping nine times as a result of injuries.

In terms of physics, the variables that matter when it comes to modeling the dynamics of a downhill skier are numerous: the mass of the athlete, her velocity, the radius of a turn, snow temperature, air temperature, course condition, the mechanical characteristics of the equipment, visibility, and the mental/physical state of the athlete. These factors need to be considered when thinking about how to lower the rate of injury for the sport.

For instance, a tighter course setting would help reduce the athlete’s velocity, which could make crashes and falls less dangerous. But as Gisin notes, such a change would also cause skiers to move closer to the nets and potentially get tangled up in them. Another idea that might be interesting to pursue is uniform “anti-aerodynamic” racing suits that reduce athletes’ velocity and provide increased protection. Also, as seen in other sports, alpine skiing could benefit from the development of better protection equipment such as helmets and back protectors.

Kurt Wüthrich and Bettina Heim at the Rolex Science Breakfast

Kurt Wüthrich and Bettina Heim at the Rolex Science Breakfast. Photo: Ch. Flemming/Lindau Nobel Laureate Meetings

Also representing ETH Zürich at the master class was Bettina Heim, a Master’s candidate in physics with a background in competitive figure skating. Her achievements in the sport include competing at two World Junior Championships, two World Championships, and becoming Swiss national champion in 2011. Only a short time after, Heim decided to hang up her skates and study physics full-time.

Her Bachelor’s studies culminated in a paper published by the prestigious journal Science in 2015, titled “Quantum versus classical annealing of Ising spin glasses.” It shows that evidence of quantum speed-up may depend on how the problem is described, as well as how the optimization routine is implemented. Today, Heim continues her research in the field of quantum computing, mostly in the realm of adiabatic quantum computing and quantum error correction, at ETH Zürich’s Institute of Theoretical Physics.

However, her focus during Wüthrich’s master class remained firmly in the world of sport and not quantum computers — in particular, she discussed the physics behind her specialty of figure skating. For instance, an athlete must gain a lot of speed going into a spin, and then one side of the body has to stop so the other can pass. This translates velocity into rotation, which results in the many types of spin moves performed by figure skaters.

As in downhill skiing, injuries remain prevalent in figure skating despite not being a contact sport. Common injuries for skaters include stress fractures, acute injuries involving tendons or ligaments, and back injuries. Heim noted that back injuries often originate from jump impacts (which can be hard on the spinal discs) and extreme positions that require flexibility (tough on muscles and ligaments).

As Wüthrich’s fascinating master class reiterated, the connections between sports and science go way beyond the physics of motion. Sometimes, an athlete and a scientist can be found within the same person.

Life in Super-Resolution: Light Microscopy Beyond the Diffraction Limit

In 1979, South African Allan M. Cormack won the Nobel Prize in Physiology or Medicine for his development of X-ray computed assisted tomography (CT), which allows physicians to see internal bodily structures without cutting. A quarter of a century later, Sir Peter Mansfield of the United Kingdom was given the same award in 2003 for advances in magnetic resonance imaging (MRI) that led to scans taking seconds rather than hours.

Today, these two imaging techniques serve as essential diagnostic and investigative tools for both medicine and the life sciences. But one unique fact about Cormack and Mansfield stands out: Despite winning the most prestigious award in medicine, neither Laureate went to medical school nor had a background in biology — rather, they were both true-blue physicists.

Cormack spent most of his research career focusing on nuclear and particle physics, while his CT efforts remained an intermittent side project for almost two decades. For Mansfield, his postdoctoral work on nuclear magnetic resonance spectroscopy in doped metals gradually transitioned into scanning his first live human subject with the newly invented MRI technique.

The tradition of physicists driving advances in biomedical imaging continues, as made evident by the lectures of Steven Chu and Stefan Hell at the 66th Lindau Nobel Laureate Meeting. Both showed visually stunning examples of their research using super-resolution microscopy, a method that transcends the diffraction limit of conventional light microscopes to probe on a nanoscopic scale.


Stefan Hell in discussion with young scientists at #LiNo16. Photo: Ch. Flemming/Lindau Nobel Laureate Meetings

“We learn in school that the resolution of a light microscope is fundamentally limited by diffraction to about half the wavelength of light,” said Hell, who gave his lecture on Thursday morning. “And if you want to see smaller things, you have to resort of course to electron microscopy.”

Hell, a physicist who currently serves as a director of the Max Planck Institute for Biophysical Chemistry in Germany, accomplished what was long thought to be the impossible. Using light microscopy and fluorescent labeling of molecules, he invented a super-resolution technique called stimulated emission depletion (STED) microscopy — the work that won him the 2014 Nobel Prize in Chemistry.

“The development of STED microscopy showed that there is physics in this world that allows you to overcome this diffraction barrier,” he said. “If you play out that physics in a clever way, you can see features that are much finer and details that are beyond the diffraction barrier.”

A conventional microscope cannot distinguish objects — say, molecules — that are packed within a space of about 200 nanometers because they all become flooded with light at the same time. Subsequently, a detector will simply record the scattering as a blurry blob of light without being able to image any individual molecules.

Hell got the idea of highlighting one molecule at a time by using fluorescent labeling, while also keeping other molecules in a dark state through stimulated emission. With a phase modulator, he could then force molecules in a doughnut-shaped area to stay dark and in the ground state while those in the center would produce light.

With this discovery, biomedical researchers could now image objects as tiny as proteins on the outside of a virus. For instance, STED microscopy was used to observe a major difference in envelope protein distribution that can be used to distinguish mature HIV that can infect cells versus those immature viruses that cannot.

“The misconception was that people thought that microscopy resolution was just about waves, but it’s not — microscopy resolution is about waves and states,” Hell emphasized. “And if you see it through the eyes of the opportunities of the states, the light microscope becomes very, very powerful.”

Steven Chu referenced Hell’s groundbreaking research during his lecture on Wednesday morning, which focused on his recent efforts in optical microscopy — quite a departure from his previous work in energy during a decade-long sabbatical.

“I sat down fresh out of government with no lab, no students, no postdocs, no money,” said Chu, who served as U.S. Secretary of Energy from 2009 to 2013. “The only thing that I could do was think, and that turns out to be liberating.”


Steven Chu during his lecture. Photo: Ch. Flemming/Lindau Nobel Laureate Meetings

A venerable jack-of-all-trades, Chu received the 1997 Nobel Prize in Physics in yet another field — atomic physics — for his development of laser cooling and trapping techniques. His latest interest in microscopy grew out of a fascination with cell signaling and how dysfunctions in the process can lead to cancer.

“If you’re a cell embedded in an organism’s tissue, you don’t willy-nilly divide — that’s considered very antisocial behavior. You divide when the surrounding tissue says it’s okay to divide,” he described. “But if you willy-nilly divide and say ‘me-me-me,’ that is called cancer.”

Using imaging techniques, the cell signaling pathway can be investigated in detail to target areas that could prevent cancer from developing. Taking Hell’s work in super-resolution microscopy a step further, Chu discussed his use of rare earths embedded in nanocrystals to replace fluorescent organic dyes. A nanocrystal can be doped with 5,000 to 10,000 impurities so it emits a certain color in the near-infrared with a very narrow spectral peak. If each class of nanoparticle is synthesized to produce a different ratio of colors, this creates a spectral barcoding of probes.

The next step is to use nanoparticle probes to image molecules through tissue in a living organism without cutting. Adaptive optics — a technique that originated in astronomy — has been employed in order to take light scattering into account, enabling high-resolution microscopy of mouse brain tissue through an intact skull.

“The question is if you go deeper into the infrared, can you look not through 500 microns but maybe 5 millimeters?” said Chu. “This is an open question we’re working on this. We’ve gotten down to a millimeter but we’ll see.”

One of his ideas involves inserting nanoparticles into cancer cells and watch them over time in order to track which cells metastasize, with the ultimate goal of developing future therapies.

Smartphones, Energy-Efficient Lamps, and GPS: How Nobel Laureates’ Work Impacts Today’s Technology

Particle physics and cosmology make up the big topics of interest for many young scientists at the 66th Lindau Nobel Laureate Meeting, with lectures by the pioneering researchers who won Nobel Prizes for their work in the cosmic microwave background radiation, neutrino mass, and the accelerating expansion of the universe. These fields embody the inquisitive and fundamental nature of physics as a discipline driven purely by a curiosity about what makes the world tick.

However, let’s not forget about the importance of more applied topics in physics, such as research in semiconductors, optics, medical physics, and nanotechnology. Physicists in these fields have contributed to groundbreaking developments in technology that impact not only society as a whole, but often affect our individual lives on a day-to-day basis.

Their work often teeters on the fuzzy border between science and engineering — a place Nobel Laureate Hiroshi Amano remains very familiar with. As one of the inventors of the once-elusive blue LED, Amano had a direct hand in the realization of full-color displays that grace our beloved smartphones, as well as the energy-efficient LED lighting quickly replacing incandescent and fluorescent bulbs.

“First of all, I’d like to mention that I’m not a physicist — I belong to the engineering department. So today, I’d like to emphasize the importance of not only the science but also the engineering,” said Amano, who kicked off the meeting’s Nobel Laureate lectures on Monday morning. “Maybe my field is not the major in this meeting, so I’d like to mention the importance of the minority.”



Hiroshi Amano during his lecture. Photo: J. Nimke/Lindau Nobel Laureate Meeting

Amano began his lecture by describing his poor academic performance from primary school to high school. Since it seemed to him that the only reason to study hard in Japan was to get into a good high school or university, he lacked sufficient motivation. A former professor changed this mindset by describing the purpose of engineering as a discipline that connects and supports the people. From that moment on, Amano had no trouble finding the inner drive to study hard.

Despite his title as a Professor in the Department of Engineering and Computer Science at Nagoya University in Japan, Amano won the 2014 Nobel Prize in Physics along with Isamu Akasaki and Shuji Nakamura for the invention of high-brightness blue light-emitting diodes (LEDs). For three decades, the creation of a commercially viable blue LED remained a slow-going and difficult endeavor for researchers despite the previous success of red and green LEDs.

“Unfortunately, all the efforts in the 1970s failed,” said Amano, citing issues with growing crystals in the material of choice for blue LEDs, gallium nitride, as well as creating p-type layers. “So many, many researchers abandoned this material and started the new material research such as zinc selenide. Only one person could not abandon this material: my supervisor, Isamu Akasaki.”

In 1985, Akasaki and Amano successfully created their own crystal growth system by using a buffer layer of low-temperature-deposited aluminum nitride that sat between the gallium nitride and sapphire substrate. After a few more tweaks involving the p-type layer, the two presented the world’s first high-brightness blue LED in 1992.

The flashy new blue LEDs could now be combined with their classic red and green counterparts to produce full-color displays for smartphones, computer screens, and televisions. Energy-efficient and long-lasting lightbulbs that emit white light use blue LEDs along with yellow phosphor, and have already started to replace incandescent and fluorescent lighting around the world. By year 2020, the total electricity consumption in Japan could drop about 7% by swapping existing lamp systems to LEDs — a savings of 1 trillion Japanese yen.

Outside of cosmology and particle physics, another fundamental field of physics lies in studying the strange and often paradoxical quantum world. Many quantum phenomena were thought to exist only in a theorist’s mind, since direct experimental observation would destroy the individual quantum systems.

However, the work of Nobel Laureate David Wineland proved otherwise. In 2012, Wineland and Serge Haroche shared the Nobel Prize in Physics for their independent discovery of experimental methods that enable the measurement and manipulation of individual particles without destroying their quantum-mechanical nature. His research has enabled the creation of extremely precise atomic clocks, with more than 100-fold greater precision than the cesium-based clocks in standard use.



David Wineland

“Certainly one of the applications of precise clocks over many centuries has been in navigation, and that’s still true today,” said Wineland during his lecture on Tuesday morning. “One system we take for granted is the [Global Positioning System (GPS)].”

Signals from satellites orbiting the Earth transmit their position and current time, which are then picked up by a GPS receiver. Given that the signals travel at the speed of light, the calculated time delays between the clocks of multiple satellites and those on the ground can be used to pinpoint the GPS receiver’s location on the surface of the Earth.

“There can be errors in the clocks, so for example if the clocks are synchronized to the nanosecond, then that gives an uncertainty of about 30 centimeters,” he said.

The standard atomic clocks in satellites today use an electronic transition frequency in the microwave range as a periodic event generator or frequency reference. Earlier examples of periodic event generators include the rotation of the Earth and the swing of a pendulum.

As Group Leader of the Ion Storage Group at the National Institute of Standards and Technology (NIST) in the U.S., Wineland began working on building a better clock in 1979 when he started to do experiments with atomic ions. The group trapped beryllium ions by surrounding them with electric fields and used tuned laser pulses to put the ions in a superposition state, or a simultaneous existence of two different energy states. A single ion trapped in this way could also be used to create an optical clock, based on optical rather than microwave transitions.

An optical clock’s precision can be better than one part in 10^17 — meaning that if you started the clock at the time of the Big Bang 14 billion years ago, it would only be off by about 5 seconds.

At the end of his lecture, Wineland described using his clocks for navigation at a scale of less than one centimeter. Not only would GPS calculations become much more accurate, but such clocks could even measure the dynamics of relative locations on Earth for earthquake prediction.

Final Preparations: Lindau calling! (2016)

In just a few days, Lindau’s Stadttheater (= city theatre) will open its doors to a week full of science and inspirational exchange and education. We, the team of organisers, are very much looking forward to having this incredible number of bright minds here, on our small island.

By now, you’ve probably gone through the numerous different phases of preparation, perhaps even packing. So here we are, about to give you some last minute guidance and lists for repacking your gear.


The Programme

Perhaps you’ve already gotten around to check this year’s meeting programme. If not, don’t worry – here’s the link to the full programme booklet.


Getting here

Actually, it does make sense to start from scratch. As there will not be any shuttle buses to Lindau that are organised by us, you will have to organise your trip to Lindau all by yourself.

Most likely, you’ll be arriving in Lindau by train. All airports you might be flying into offer connections to “Lindau Hbf” (the train station to head to) via train. You can either buy a ticket at the train stations or via www.bahn.com. You have arrived in Lindau as soon as you see water to your left, to your right and in front on you. Welcome to Lake Constance.



In order to take advantage of everything Lindau has to offer, you need to register with us and get your conference materials. Upon you will receive your name badge that indicates to our staff which events you will attend, your personal agenda, the final programme and more.

Registration will take place in a small tent in front of this year’s meeting venue Stadttheater (Address: Fischergasse 37, 88131 Lindau) and open on Saturday, 25 June from 3:00 p.m. till 6:00 p.m and Sunday, 26 June from 10:00 a.m. until 8:00 p.m. Please note that you will have to show a valid ID at the registration desk.


Everything else you need to know

The opening ceremony starts on Sunday at 4:00 p.m. , the Stadttheater will open its doors at 3:00 p.m. For security reasons it is not allowed to bring any large bags. For your convenience, there is a depository truck where your luggage will be securely stored just outside the Stadttheater next to the internet tent. You will have to have your name badge and valid ID-card with you for access.

For a google Map with all the important places in Lindau, please click here (or check the meeting app):



What to Bring & What to Wear

There is no dress code for the regular scientific sessions. For invitational dinners, you may want to bring something more festive (suits, cocktail dresses). As the lake is great for swimming, you may want to bring swim wear. Some of the local swimming pools even offer free entrance for the participants of the Lindau Meeting. Sunscreen and mosquito repellents are a good idea as well.

Make sure to bring comfortable shoes that are suitable for cobblestone pavement or various weather conditions. A hairdryer as well as a voltage converter (220 volt) or adapter may be useful as German socket-outlets vary from those abroad.

Over the last years one of the events has become particularly popular among all participants: The “Bavarian Evening” hosted by the Free State of Bavaria. For this, it is a great idea to wear a traditional festive costume from your home country. Those of you who own a traditional Bavarian costume (a Dirndl dress for women and Lederhosen for men) are more than welcome to wear that instead.


Internet & Phones

There is an internet café with work stations at the meeting. In addition, the meeting venue is equipped with wireless LAN (WiFi). Please check your conference for the log-in credentials.

It’s always helpful if you bring along your mobile phone so that we will be able to contact you easily. To use a mobile phone in a German network, it needs to support the GSM standard (used all over Europe). The German country code is +49.



The currency used in Germany and many European countries (except Switzerland) is the Euro. Money can be exchanged at airports or at local banks. Credit cards (e.g. Visa, Mastercard) and Maestro/EC cards can be used to withdraw money from ATMs (called “Geldautomaten”) using your PIN. Please check the map to see where to find the nearest ATMs. Cheques and traveller cheques have become rather uncommon and are hardly accepted anywhere.



Please note that our staff is not authorised to hand out any medication. In case of an emergency at the main meeting venue, please contact the staff. A paramedic team is present at the meeting venue and can help with all health related issues. If you have an emergency at a different location, please either contact any of the staff if present, or call 112, the official emergency number that will work in all the EU countries and in Switzerland. During the meeting, you will be covered by a health insurance policy provided by the organisers.


The Meeting App

For the first time, there will be a conference app avilable at this year’s Lindau Meeting. All the information from this post can also be found in there (…and more!). For an in-depth explanation on how to get started with the app, please to refer to my colleague Vincenzo’s guide.


Last but not least

If you want to get a taste of the “Lindau spirit” prior to the meeting, we invite you to take a look at our Facebook page or follow us on twitter @lindaunobel. Throughout the week of the meeting, we will try to post as much intersting content as possible via #LiNo16, this year’s official hashtag. Do join the conversation – we’d be happy!

My colleagues and I will be happy to assist you at the Young Scientist Help Desk should you have any questions. It is going to be a great week, so let’s make the most of it!

And finally, if you haven’t seen them yet, take a look at our new bags, which will soon be yours ;-)

Nadine, Nesrin and Karen - always there to help you out during your time in Lindau!

Nadine, Nesrin and Karen – always there to help you out during your time in Lindau!

#LiNo16: How to make a big conference greener, cleaner and more sustainable

Simplified, it’s the job of our meeting participants – Nobel Laureates and young scientists alike – to make the world a better place through science. We, the organisers of the Lindau Nobel Laureate Meetings, strive to contribute a tiny bit to the success of their quest: We bring researchers together, facilitate an exchange of ideas and encourage them to form international networks. But is this all we can contribute? Enough to pat ourselves on the back? We don’t think so!

Maybe it’s not the first thing that comes to mind when you think about meetings and conferences, but these events often leave colossal carbon footprints. Think about the CO2-emissions of hundreds (for really big conferences even thousands) of people that travel by car or plane, think about a sea of mostly plastic trash, think about countless pages of printed out conference materials. Worrisome, right? And these are only some of the more obvious, ecological aspects.

“In many lectures and discussions Nobel Laureates like Christian de Duve, Mario Molina, Brian Schmidt and others emphasised the importance of acting sustainably and responsibly. We therefore see this as an obligation for our work in organising the meetings,” says Wolfgang Huang, Managing Director of the Executive Secretariat of the Lindau Nobel Laureate Meetings. That’s why several years ago the idea of “green conferencing” became a new focus of attention during the planning of the annual Lindau Nobel Laureate Meetings.


Lindau Harbor - a sight to behold, not only for our feathered friends. Photo: iStock.com/Mor65

Lindau Harbour – a sight to behold, not only for our feathered friends. Photo: iStock.com/Mor65

In order to improve the process of incorporating sustainability aspects into the planning of the meetings, Katja Merx, project manager in Lindau’s conference management, was appointed as officer of sustainability. “To me it was only natural to devote myself to this issue in my working environment, too. I have been following the principle of sustainability for years in my private life, anyway!”, Katja remarks. It’s not all about environmental protection though, according to Katja: “Many people tend to forget that sustainability also includes economic and social aspects – and we’re steadily trying to increase our efforts in these areas, too!”


We review all  measures each year in the early planning phase of a meeting and try constantly to explore further possibilities within the limits of what we can do as a non-profit organisation. So which measures do we actually take in 2016 for the 66th Lindau Nobel Laureate Meeting? Have a look:

  • All electricity used for the meeting is provided by the Lindau municipal utilities who run on  100% green energy
  • Young scientists are free to use Lindau’s public bus system during the meeting week
  • Shuttle Service for the Nobel Laureates partly consists of hybrid cars
  • Meeting bags are produced from sustainable materials
  • Meeting lanyards are produced from materials that are 100% recyclable and no plastic covers are used for the name badges
  • Meeting tents: Flysheets and floor coverings are reusable
  • All tents and venues use energy saving lamps
  • Catering: Regional and seasonal food
  • Local companies are selected for services such as catering, technical support or logistics
  • Young scientists are encouraged to use Atmosfair for their flights (details below!)


If you can’t avoid it, compensate!



An international conference can hardly avoid CO2-emissions caused by air travel of its participants, however, there’s the possibility of making up for that by donating money to climate friendly projects. For this we are partnering with the trusted German NGO Atmosfair. They offer a service that calculates the CO2-emissions generated by your flight as well as the amount of money that should be donated in turn to climate protection projects to equalize these emissions.
If you are thinking about using Atmosfair for your Lindau-flights we would like to ask you to use the embedded form below – this way we will be able to analyze how many of our meeting participants are actually making use of Atmosfair:



We encourage all participating young scientists of our meetings to consider using this service for their travel to and from Lindau. As travel is organised by the young scientists themselves, this is of course absolutely voluntary.

Das Wichtigste? Der Spaß an der Wissenschaft

Wie? Schon vorbei? Ja, leider. Die Zeit verging wie im Fluge. Es war eine anstrengende aber tolle Woche mit inspirierenden Vorträgen und interessanten Gesprächen. Der Blick über den Tellerrand, den dieses interdisziplinäre Treffen mir ermöglichte, stimmt mich zuversichtlich für den wissenschaftlichen Fortschritt, den wir in den nächsten zehn Jahren erwarten dürfen.




Es herrschte eine angenehm offene Atmosphäre. Ich spürte, hier trafen sich über 700 Menschen, die Spaß an der Wissenschaft hatten und gerne darüber sprachen – immer und überall: Im Bus zu meinem Hotel traf ich Maxwell Barffour aus Ghana und sprach mit ihm über die Labordiagnostik von Malaria und HIV in afrikanischen Kleinkindern. Auf der Uferwiese des Bodensees erklärte mir Evans Kataka aus Kenia die wachsende Bedeutung der Bioinformatik in der Krebsforschung. Im Café zeigte mir Viputeshwar Sitaraman aus Indien seine tolle Infografik zur 4Pi-Mikroskopie von Chemienobelpreisträger Stefan Hell. Beim Tretbootfahren wurde ich von Arlette Vyry Wouatsa Nangue aus Kamerun über die Arbeitsbedingungen in den deutschen Laboren befragt. Da kam ich dann leider schnell auf unbezahlte Überstunden, befristete Verträge und Drittmittel zu sprechen.


Foto: A. Schröder/Lindau Nobel Laureate Meetings

Foto: A. Schröder/Lindau Nobel Laureate Meetings


Ich hatte nette Kollegen im Lindauer-Blog-Team, die ich leider viel zu selten sah. Es gab viel zu schreiben und jeder hatte seine persönliche Agenda, da blieb zu wenig Zeit für den Austausch. Ich bin froh Wissenschaftsblogger wie Florian Freistetter (Blog: Astrodicticum Simplex) und Jalees Rehman (Blog: The Next Regeneration) jetzt persönlich kennengelernt zu haben. Lustig war vor allem, dass Jalees und ich im gleichen Hotel wohnten und uns dort nie sahen, obwohl es ziemlich klein war. Klein aber gemütlich ist Lindau und manchmal fühlte ich mich in das Auenland versetzt, das J.R.R. Tolkien im Herrn der Ringe beschreibt. Die Lindauer sind höflich, hilfsbereit und freundlich. Jenseits von Wissenschaft und Blogposts war mein tägliches Highlight die Busfahrt zum Hotel: Mitten durch die Fußgängerzone und die engen Gassen der Altstadt, die keine Auswegmöglichkeiten boten. Das hatte was, vor allem wenn ein Radfahrer vor uns sich alle Zeit der Welt nahm, weil er den Bus nicht bemerkte. Um 22 Uhr fuhr der letzte Bus zu meinem Hotel, meine Idee “Round about Midnight” (Thelonius Monk) noch in einem Lindauer Jazzcafé zu sitzen, gab ich damit auf.




Es gab auch stille nachdenkliche Momente in Lindau: Ich werde nicht vergessen wie Susumu Tonegawa am Ende seiner Vorlesung an seinen, im Februar dieses Jahres verstorbenen, PostDoc Xu Liu aus Shanghai erinnerte. Ich denke wir sollten viel häufiger zu Beginn einer Vorlesung Gedenkminuten für verstorbene Kollegen halten, vor allem wenn die Vorlesung über ein Thema ist an dem der Verstorbene gearbeitet hat.


65th Lindau Nobel Laureate Meeting,


Das Wichtigste was ich von Lindau mitgenommen habe war Oliver Smithies‘ Rat an die Nachwuchswissenschaftler in seinem Vortrag “Where Do Ideas Come from?”:

It’s quite unimportant what you do. Isn’t it? It doesn’t matter what you do to get a PhD. All that matters is that you learn to do good science. But there is a corollary. You have to enjoy it. If you don’t enjoy it, then go to your advisor and say: „I’m not enjoying what I’m doing.” I’m serious, I really mean this. And then if your advisor won’t or can’t give you another problem, change your advisor.


Reflections of Mainau and Lindau: An eternal reminder of a scientist’s social responsibility

If there was a heaven on Earth for scientists, then it would be found in Bavaria in the beautiful town of Lindau. And if motivation on how to effect social change could be bottled up in one location, then it would be on Mainau, the beautiful flower island of the Bernadotte family. Picture: Insel Mainau/Peter Allgaier.

If there was a heaven on Earth for scientists, then it would be found in Bavaria in the beautiful town of Lindau. And if motivation on how to effect social change could be bottled up in one location, then it would be on Mainau, the beautiful flower island of the Bernadotte family. Picture: Insel Mainau/Peter Allgaier.

For us young scientists, this was always going to be the conference that would become the yardstick against which all previous and future meetings would be measured. But if our experiences at Lindau during the week were extraordinary, then the events of Mainau on Friday 3rd July 2015 were truly transcendental.

In spite of (or perhaps because of) the challenging world in which we live, young scientists aspire to keep a healthy balance of idealism and pragmatism. We receive education and training. Along the way, we become involved in research that will potentially improve quality of life or man’s understanding of the world. We hope to make a positive difference to society or another person’s life story, help the next generation, and, in doing so, pay forward the kindness provided to us by our own mentors. In the professional world of a developing scientist, this is the great Circle of Life.

For the young scientists, this week was not just about learning from Nobel Laureates and senior scientists how to perform good science and become successful, but also how one should live when one has become successful. We were taught, through the Laureates’ personal examples, to remain humble, always aiming to respect others and achieve a balanced perspective, while continuing one’s work and striving for the betterment of mankind. Throughout the week, the Nobel Laureates allowed us into their world: they gave us their time, and granted us privileged access to their life stories and thoughts. They also conveyed their hopes and concerns for the future. We heard about the important problems of feeding the ever-growing population of the world, supporting science and scientists in Africa, ending child exploitation and supporting their universal right to education. We learnt the importance of an education in science, the need for scientists to communicate effectively, and how this could help society, as a whole, on so many different levels.


The Nobel Laureates on stage signing the Mainau Declaration 2015 (Harry Kroto). Photo: L. Wang

The Nobel Laureates on stage signing the Mainau Declaration 2015 (Harry Kroto). Photo: L. Wang


But Mainau brought all these ideas to a whole new level. There, the Nobel Laureates provided an eternal reminder of the importance of a scientist’s social responsibility. The vision of the Nobel Laureates signing the Mainau Declaration 2015 is something that I will remember forever – walking onto the stage as a group, holding arms, supporting each other, laughing, chatting, smiling as they each waited their turn to sign. These images remain a powerful illustration of the strength of unity, in purpose and conviction.

I felt enormous pride and admiration as Brian Schmidt stood up as spokesperson for the Mainau Declaration 2015, and the solidarity and unity of all four Australian Nobel laureates as they joined an ever-growing number of Nobel Laureates gathered on stage, many of whom I was privileged to talk to during the course of the week. In terms of inspiring social responsibility, few things can motivate a young scientist more than watching one’s heroes united on stage, participating in a cause important to our future and that of our children.

We left Mainau and Lindau, knowing that we had witnessed history in the making – a declaration that will hopefully help steer humanity in the right direction.

And, having been transformed and inspired by this amazing week, we hope to pay forward the amazing opportunity given to us by the Council for the Lindau Nobel Laureate Meetings and the Nobel Laureates – to dedicate ourselves to science and society, now and forever more.

Daily Recap, Tuesday, 30 June 2015

Video of the day:

Today’s video of the day is the lecture of Jack Szostak who talked about “The Origins of Cellular Life“.



This is not the only video from today! You are more than welcome to browse through our mediatheque for more.


Blog post of the day:

The importance of venturing beyond is shown in our blog post of the day “Of Polymaths and Multidisciplinarians“. Enjoy reading this interesting Long read.




Do take a look at even more exciting blog posts.


Picture of the day:

Yesterday saw one of the less scientific highlights, the International Get-Together. The great discussions between Nobel Laureates, Young Scientists and guests from Lindau as well as the full moon shimmering above Lake Constance gave the relaxed evening a magical atmosphere.


65th Lindau Nobel Laureate Meeting, Lindau, Germany, Picture/Credit: Adrian Schröder/Lindau Nobel Laureate Meetings, 30 June 2015 Grill & Chill Evening at Toskana Park No Model Release. No Property Release. Free use only in connection with media covera


For even more pictures from the Lindau Nobel Laureate Meetings, past and present, take a look at our Flickr-account.


Tweets of the day:

Again, here are a few tweets that reached us.



Last but not least, follow us on Twitter @lindaunobel and keep an eye out for #LiNo15

Lindau 2015: Neue Antworten auf alte Fragen

Es geht los! 65 Nobelpreisträger, 650 Young Scientists, 6 Tage Programm, vollgestopft mit Vorträgen, Seminaren, Diskussionen. Lindau wird summen wie ein Bienenstock. Wissenschaftler, wo man steht und geht, da hoffe ich natürlich einen Nobelpreisträger persönlich kennenzulernen: Im Hotel beim Frühstück, im Bus zum Vortragssaal oder beim Grillen am See.



Ich freue mich besonders auf den Krebsforscher Michael Bishop und den Schriftsteller Wole Soyinka, zwei Menschen, die mein Denken prägten: Der Amerikaner Bishop durch seine eleganten genetischen Experimente, und der Nigerianer Soyinka durch seine mahnenden politischen Bücher. Obwohl beide auf unterschiedlichen Gebieten ausgezeichnet wurden, gingen sie der gleichen Frage nach: Wie kann die Fehlbarkeit des Einzelnen eine so verheerende Auswirkung auf alle haben?

So wie eine Tumorzelle mit ihrem fehlgesteuerten genetischen Programm einen ganzen Körper mit seinen Millionen Zellen zugrunde richten kann, so kann ein Diktator mit seinem missratenem politischen Programm einen ganzen Staat mit seinen Millionen Menschen zugrunde richten.

Ich bin sehr gespannt auf den Vortrag von Susumu Tonegawa über „Memory Engram Cells” – diese sind dafür zuständig, Gedächtnisinhalte abzurufen. Tonegawa hat diese Zellen in Mäusen identifiziert, mittels Neuropharmaka inhibiert, Optogenetik aktiviert und beobachtet, welche Auswirkungen diese Eingriffe auf das Gedächtnis haben. Da ich mich während meiner neurogenetischen Promotion auch mit Alzheimer beschäftigt habe und dabei besonders mit der Frage, warum bei dieser Krankheit nur bestimmte Nervenzellen des Gehirns krank werden, interessiert mich dieses Thema.

Ein Science Breakfast beschäftigt sich mit dem Thema Science and Ethics. Konkrete Inhalte sind noch nicht bekannt, aber ich hätte einige Vorschläge: Mögliche genetische Diskriminierung in der Personalised Medicine durch Krankenversicherungen und Arbeitgeber, die therapeutische Anwendung der CRISPR-Technologie in humanen embryonalen Stammzellen, Genomischer Datenschutz von HeLa-Zellen und öffentlich geförderte Forschung an HeLa-Zellen.

„Ex Africa semper aliquid novum“

„Aus Afrika kommt immer etwas Neues“ wusste schon der römische Geschichtsschreiber Herodot und deshalb bin ich gespannt auf die Geschichten derjenigen afrikanischen Young Scientists, die in ihren Heimatländern forschen. Da ich selber 3 Jahre in Afrika in einem staatlichen Virologie-Labor gearbeitet habe, kenne ich die Probleme der medizinischen Forschung vor Ort: mangelhafte instrumentelle Ausstattung und fehlender Zugang zur Fachliteratur. Ich kenne jedoch auch den Einfallsreichtum und die Resilienz meiner afrikanischen Kollegen, die sich mehr fachlichen Austausch mit Wissenschaftlern aus anderen Ländern wünschen. In Lindau werden sie dazu reichlich Gelegenheit haben: in den Discussions with Young Scientists und den Master Classes mit den Nobelpreisträgern. In der Master Class halten jeweils vier bis fünf junge Wissenschaftler einen Kurzvortrag und ein oder zwei Nobelpreisträger moderieren die anschließende Diskussion. Vielleicht kommt ja einer der heute teilnehmenden Young Scientists in 30 Jahren als Nobelpreisträger nach Lindau zurück: Bei der Verleihung des Nobelpreises sind die Preisträger in Chemie und Physik durchschnittlich 57, in der Medizin 55 Jahre alt.



Ich freue mich, dass „Wissenschaft in Afrika“ ein Schwerpunkt der diesjährigen Tagung ist und bin gleichzeitig enttäuscht, dass der einzige afrikanischstämmige Chemie-Nobelpreisträger, Ahmed Zewail, nicht in Lindau dabei ist. 1999 erhielt der gebürtige Ägypter für seine Leistungen auf dem Gebiet der Femtochemie den Nobelpreis. Er hatte mithilfe von Lasern ein bahnbrechendes Verfahren zur Beobachtung der Bewegungen einzelner Atome auf der Zeitskala von Femtosekunden entwickelt. Eine Femtosekunde entspricht dem millionsten Teil einer Milliardstelsekunde. Die sogenannte Femtosekunden-Spektroskopie erreicht damit den Zeitraum, in dem chemische Reaktionen tatsächlich stattfinden und ermöglicht, wichtige Reaktionen zu verstehen und vorauszusagen. In seiner 2004 erschienenen Biographie “Voyage Through Time: Walks of Life to the Nobel Prize” (Deutsch: Reise durch die Zeit – Weg zum Nobelpreis) erzählt er seine Lebensgeschichte und beschreibt seine Arbeit bis zur Verleihung des Nobelpreises. Es wäre schön gewesen, diese Geschichte von ihm selbst zu hören.

Umso mehr freue ich mich, dass der Physik-Nobelpreisträger Claude Cohen-Tannoudji in Lindau teilnehmen wird. In seinem Nobelpreis-Vortrag 1997 erzählte er gleich zu Anfang, dass seine Familie aus Tanger, Marokko stammt und seit dem 16. Jahrhundert in Algerien lebt. Cohen-Tannoudji erhielt den Preis für das Kühlen und Einfangen von Atomen mit Laserlicht. Er entwickelte die Sisyphus-Kühlung mit der er eine Temperatur von nur 6 Millikelvin erzeugte, die deutlich unter dem Doppler-Grenzwert liegt. Cohen-Tannoudji wird in Lindau über “The Adventure of Cold Atoms. From Optical Pumping to Quantum Gases„ sprechen.




Was die 88 in Lindau teilnehmenden Nationen betrifft erwarte ich bei den Nachwuchswissenschaftlern eine große Vielfalt aber nicht bei den Nobelpreisträgern. Es wird ein G3-Gipfel sein: Rund 70 % der Nobelpreisträger in Physik, Chemie oder Medizin kommen aus einer der drei folgenden Nationen: USA, Deutschland, UK (England, Schottland, Wales, Nordirland).

Von 1901 bis 2014 gab es 199 Physik-Nobelpreisträger davon 87 aus den USA (Platz 1) 25 aus Deutschland (Platz 2) 21 aus UK (Platz 3). 67 % der Physik-Preisträger kommen aus einer dieser drei Nationen.

Wenig anders sieht es bei den 169 Chemie-Nobelpreisträgern aus: 64 aus den USA (Platz 1), 29 aus Deutschland (Platz 2), 27 aus UK (Platz 3). 71 % der Chemie-Preisträger kommen aus einer dieser drei Nationen.

Das gleiche Bild bei der Medizin: 207 Medizin-Nobelpreisträger, davon 96 aus den USA (Platz 1); 31 aus UK (Platz 2), 17 aus Deutschland (Platz 3). 70 % der Medizin-Preisträger kommen aus einer dieser drei Nationen.

Ich wundere mich deshalb nicht, dass es die jungen Wissenschaftler aus den Entwicklungs- und Schwellenländern in eine dieser drei Nationen zieht. Sie gehen dorthin wo es die besten Forschungsbedingungen und Mentoren gibt. Ahmed Zewail, mittlerweile amerikanischer Staatsbürger und Professor am CalTech ging diesen Weg. Und wer weiß, vielleicht knüpft einer der Young Scientists ja schon Kontakte in der Master Class in Lindau? Aber warum mal nicht den umgekehrten Weg gehen? Ich wünsche mir, dass ein Nobelpreisträger mal sein Sabbatical in einer afrikanischen Forschungseinrichtung verbringt, damit er sich vor Ort selbst ein Bild der Lage macht und das ungenutzte wissenschaftliche Potenzial sieht.

Unter den 65 Nobelpreisträgern in Lindau befinden sich drei Frauen (4.6 %). Die bisherigen 575 Nobelpreise in Physik, Chemie und Medizin gingen an 559 Männer und 16 Frauen (2.8 %). In Physik bekamen zwei Frauen den Nobelpreis, in Chemie vier und in Medizin zehn Frauen. Die Professorenschaft ist also bisher ein Männerverein – aber das soll nicht so bleiben. Was wir tun müssen um das zu ändern, darüber sollte in Lindau gesprochen werden. Ich hoffe, dass Friedensnobelpreisträger Kailash Satyarthi das Thema in seinem Vortrag „Education Needs to be Equitable and Inclusive for All“ zur Sprache bringt. Vor allem vor dem Hintergrund des jüngsten Sexismusskandal um Nobelpreisträger Tim Hunt, der bei seinem Vortrag über Frauen in der Wissenschaft in Südkorea, mit einem sexistischen Witz über Frauen, viele Wissenschaftlerinnen verärgerte.




Die Lindauer Nobelpreisträgertagung ermöglicht es nicht nur begeisternde Vorträge aus der Wissenschaft zu hören, sondern auch konstruktiv-kritisch zu hinterfragen wie wir Wissenschaft betreiben, kommunizieren (Publikationsbias, Open Access, Impact Factor) und bezahlen (Industrie und Drittmittel). Wir sollten die mediale Aufmerksamkeit nutzen um neuen Ideen Gehör zu verschaffen.

Teaching Spirit 2015: “Ich will die Welt in die Schule holen.”

Wie in den vergangenen Jahren sind bei der 65. Lindauer Nobelpreisträgertagung auch Lehrer vertreten. “Teaching-Spirit”-Teilnehmerin Dr. Annette Bös im Interview über ihre Leidenschaft fürs Unterrichten.

Große Wissenschaftskarrieren beginnen nicht erst an der Universität, sondern bereits in der Schule. In der Regel entscheidet sich hier, wer sich für Naturwissenschaften begeistern kann und wer das Talent zum Forscher hat. Einen entscheidenden Anteil an der Ausbildung der jungen Wissenschaftler haben Lehrer. Deshalb nehmen auch in diesem Jahr im Rahmen des Programmes „Teaching Spirit“ 38 Lehrer aus der Bodenseeregion an der 65. Lindauer Nobelpreisträgertagung teil. Hier treffen sie auf 65 Nobelpreisträger sowie auf rund 650 der besten Nachwuchswissenschaftler aus fast 90 Ländern.

Eine der teilnehmenden Lehrkräfte ist Dr. Annette Bös. Die studierte Biologin und promovierte Sportwissenschaftlerin unterrichtet Biologie, Sport, Ethik sowie Naturwissenschaft und Technik am Spohn-Gymnasium in Ravensburg. In Lindau wird sie Vorträge von Nobelpreisträgern besuchen und einige der Laureaten bei einem Mittagessen auch persönlich kennenlernen. Im Interview spricht sie über ihre Leidenschaft zum Unterrichten, die Motivation ihrer Schüler für Wissenschaft und Forschung und die bevorstehende Begegnung mit Nobelpreisträgern.


Frau Bös, wann wussten Sie, dass Lehrerin Ihr Traumberuf ist?

Bös: Das hat lange gebraucht. Während meiner Promotion bin ich aushilfsweise als Sportlehrerin eingesprungen. Ich hatte noch wenig Wissen von Didaktik und Methodik, aber es hat mir unglaublichen Spaß gemacht. Ab da wusste ich: Das ist genau das, was ich machen möchte. Junge Menschen motivieren, Potentiale erkennen und Wissen vermitteln – deshalb bin ich von der Uni direkt wieder zurück in die Schule.

2015-06-10 14.07.35

Gerade Naturwissenschaften lassen sich am besten durch praktische Versuche vermitteln. Foto: Annette Bös.

Ändert Ihre wissenschaftliche Karriere etwas an Ihrer Art, zu unterrichten?

Bös: Ich will den Schülern begreifbar machen, dass Forschung lebendig ist. Das, was sie in Schulbüchern lernen, ist nicht in Stein gemeißelt. Manche Hypothesen können in zehn Jahren schon nicht mehr aktuell sein. Außerdem versuche ich, ein vernetztes Denken zu vermitteln. Viele Schüler glauben etwa, dass sie nichts mit Chemie zu tun haben, wenn sie das Fach Biologie belegen. Dieses Schubladendenken ist heutzutage nicht mehr möglich. Die Interdisziplinarität wird immer wichtiger.


Welchen Stellenwert hat Wissenschaft und Forschung für Ihren Unterricht?

Bös: Ich versuche immer, auf dem neuesten Stand der Forschung zu sein und regelmäßig aktuelle Themen aus der Wissenschaft miteinzubauen. Beispielsweise bespreche ich jedes Jahr den Hintergrund des Medizin-Nobelpreises. Zudem möchte ich wissenschaftliche Inhalte durch Exkursionen erlebbar machen. Mit meinen Klassen gehe ich etwa in Labore, Universitäten oder Kliniken.


Haben Sie den Eindruck, dass Sie die Schüler dadurch für Naturwissenschaften begeistern können?

Bös: Das größte Interesse wecken erlebbare Themen, die dem Alltag entspringen, etwa was bei bestimmten Krankheiten im Körper passiert. Hier passen die Schüler am besten auf. Ansonsten merken die Jugendlichen selbst, ob sie sich für wissenschaftliche Themen interessieren oder nicht. Wenn jemand Spaß daran hat, wird er sich aus eigenem Interesse weiter damit beschäftigen. Die, die Probleme mit Naturwissenschaften haben, versuche ich vor allem auf persönlicher Ebene zu motivieren. Grundsätzlich möchte ich Schüler nicht bevormunden, sie sollen selbst Lösungen finden und sich einen „aha“-Effekt erarbeiten. So lässt sich das Wissen am besten langfristig verankern. Was ich ihnen außerdem mit auf den Weg gebe: Studiert nichts, nur weil es gerade im Trend ist.


In Lindau nehmen Sie am Programm “Teaching Spirit” teil. Was ist Ihr ganz persönlicher “Teaching Spirit”?

Bös: Ich will nicht einfach nur Wissen vermitteln, ich will lebendigen Unterricht, die Welt in die Schule holen und die Schule der Welt nahe bringen. Der Wissenstransfer sollte in beide Richtungen erfolgen. Wir lernen gegenseitig voneinander, ich auch von und durch meine Schüler.


Annette Bös mit einigen Schülerinnen. Foto: Annette Bös.


Welche Motivation haben Sie für die Teilnahme an der Lindauer Nobelpreisträgertagung?

Bös: Ich freue mich darauf, Menschen kennenzulernen, die aktiv in der Forschung sind. Von ihnen möchte ich dazulernen und meinen eigenen Horizont erweitern. Gespannt bin ich vor allem auf den Vortrag von Susumu Tonegawa, der die Funktionsweise des Immunsystems erforscht hat. Dieser Bereich hat mich schon immer besonders fasziniert.


Bei einem gemeinsamen Mittagessen werden Sie Nobelpreisträger persönlich kennenlernen. Was möchten Sie im Gespräch mit diesen herausragenden Wissenschaftlern in Erfahrung bringen?

Bös: Mich interessiert, was Wissen mit Menschen macht. Für mich selbst bedeutet Bildung Freiheit, das versuche ich auch immer meinen Schülern zu vermitteln. Ich bin gespannt, was Nobelpreisträgern Wissen bedeutet und inwieweit es ihr Handeln beeinflusst. Außerdem möchte ich fragen, wie sich ihr Leben durch den Nobelpreis verändert hat.


Das Teaching-Spirit-Programm, an dem Dr. Annette Bös teilnehmen wird, findet am 1. Juli im Rahmen der 65. Lindauer Nobelpreisträgertagung statt. 38 Lehrer aus der Bodenseeregion werden an diesem Tag Vorträge von Nobelpreisträgern verfolgen, einige von ihnen bei einem gemeinsamen Mittagessen kennenlernen und einen Workshop des IPN – Leibnitz-Instituts für Pädagogik der Naturwissenschaften und Mathematik besuchen.