A Long Road to Becoming a Chemist

The path to my professional career as a chemist was not easy but constructive and challenging in some ways. I grew up in a small, quiet and traditional town in the state of Mexico Texcoco. Both of my parents had to overcome severe economic difficulties to pursue their own career in biology. Thankfully, I was blessed with their pledge to provide me a good education.

I attended a private school to learn English and because the academic programme was more challenging. During my basic education, I participated in several science and academic contests and I enjoyed the school profoundly. My generation was the first that stayed at home, there were not more chances to play in the streets or the neighbourhood, because of the numerous cars in the streets and the worsening of security. Then, in the middle school, I attended a math workshop where I learned tricks to do arithmetic operations in a flash and to solve math puzzles. With that training, I was selected to participate in Math Counts and the Pierre Fermat contest. Later, I enrolled in the EPT-UAEM public high school and was benefitted with a scholarship. During my last year there, I was invited to train for the regional Chemistry Olympiads. I was selected to continue to the state and furthermore the national contest.  That stage was meaningful for my further decision to study chemistry since I was selected to attend Mexico’s National Olympiad of Chemistry. This privilege implied a strong commitment by means of travelling two hours to the school of Chemistry of UAEM-Mexico to be trained for the competition, and then two hours more for the way back. I travelled with my mother after the school in an old van provided by the principal two or three days a week during some months. We arrived at home almost at midnight, exhausted but enthusiastic about my training and the hopeful support within my family. I valued that experience greatly because other peers and I received fascinating lessons with devoted teachers and scientists.

 

Photo: Courtesy of Ana Torres

Ana Torres in front of the Rudder Fountain on the Texas A&M University campus, Photo: Courtesy of Ana Torres

 

After the enriching experience of attending the national contest and motivated by my teachers I decided to study chemistry in the School of Chemistry of the National Autonomous University of Mexico. So therefore, I spent four hours on a round-trip each day to Mexico City to pursue my bachelor degree. Sometimes I travelled by car with my father before dawn, but other days I had tiring trips in the overcrowded subway and the bus, which arrived in the middle of nowhere, where my parents picked me up. Fortunately, quantum chemistry captivated me and I joined a theoretical research workgroup after I had my first course in that subject area.

One year later, I got my bachelor degree with honours and continued my postgraduate studies in chemistry supported by a grant of the National Council of Science and Technology. Usually, there are very few students willing to pursue a career in Theoretical Chemistry in my program. It is worth mentioning that while I studied, my advisor and other theorists designed the Quantum and Computational Chemistry post-graduate courses – indeed some of the lectures were given for the very first time. Furthermore, at that time I started my own family and I had to organise my time efficiently to get a functional balance between motherhood, research and teaching. Therefore, through family shared efforts, hard-work and passion for science I graduated with honours, gaining the M.Sc. and Ph.D. degrees in chemistry, whereas my son developed a love for math.

 

Ana Torres with her parents, Photo: Courtesy of Ana Toores

Ana Torres with her parents, Socorro Hernandez and Pablo Torres, at the National Autonomus Unviersity of Mexico, Photo: Courtesy of Ana Torres

 

I became a teacher and mentor for undergraduate students just after I got my Master’s degree. Then, for the Ph.D., I moved to the Materials Research Institute where Prof. Serguei Fomine became my advisor. From him I learned a strong discipline of work and a structured way to analyse the chemical problems. This contributed positively since I graduated in less time than my postgraduate program demarked. After I graduated, I was accepted for a postdoctoral position within the group of Prof. Perla Balbuena in Texas A&M University. Thus, I dealt with almost six months of paperwork to get a scholarship and arrange the immigration documentation for my son, my husband and for me. I arrived in the US one month later than the start date of the programme given the migratory issues. At present, I am grateful for the support and academic guidance of Prof. Balbuena and committed to work hard on my research project. My family and I are partaking this opportunity to grow in academic and personal areas and I shall respond to their great effort. Science has opened me the doors to travel to countries abroad and to build collaborations and friendships. Currently, I am member of the Graduate Women in Science organisation, the Toastmasters club as well as the group of Bible studies for women and I enjoy sharing Spanish classes.

 

Lindau Alumni 2017 Ana Torres and Octavio Saucedo, Nobel Laureate Mario Molina, former President of the Mexican Academy of Sciences Jose Franco and Director of International Cooperation CONACYT, Arturo Borja (from left to right) after a discussion on Public Policy at the 67th Lindau Meeting, Photo: Courtesy of Ana Torres

Lindau Alumni 2017 Ana Torres and Octavio Saucedo, Nobel Laureate Mario Molina, Jose Franco, former President of the Mexican Academy of Sciences, and Arturo Borja, Director of International Cooperation CONACYT, (from left to right) after a discussion on Public Policy at the 67th Lindau Meeting, Photo: Courtesy of Ana Torres

 

The main goal of my current research project is to perform a theoretical study of the interfacial phenomena relevant for the development of new generation rechargeable batteries. Likewise, I will address the confinement effect exerted by molecular sieves, solvents, nano-structured materials or an inert gas matrix over the chemical reactions, which are important for chemical catalysis. It is expected that the outcome of this project would support experimental research that has been developed for both the description and design of battery materials and catalytic systems. Nowadays, it is important to assist the novel frontier materials design (with enhanced features) using theoretical methods and computational calculations before being synthetised in the laboratory. This could be very helpful to optimise resources and facilitate the materials implementation for the manufacturing process of technological devices.

From Copper Photocatalysts to Chemical Topology

When Jean-Pierre Sauvage started his own research lab, he focused on developing copper catalysts that could absorb light and use that energy to split water into hydrogen and oxygen gases. After characterising the shape of one of these catalysts, the focus of his research changed to that recognised by the 2016 Nobel Prize in chemistry: synthesising molecules with interlocking rings and knots.

The game-changing catalyst was a copper ion binding to the concave portions of two crescent-shaped phenanthroline molecules. Because of its binding geometry, the copper ion held the arcs in perpendicular planes. Sauvage realised that closing each crescent to form a loop would create a molecule with two interlocking rings, called a [2]catenane. “At that stage, we had to decide whether we would continue in the field of inorganic photochemistry, or be more adventurous and jump into a field we didn’t know so well,” Sauvage said. “We decided to jump.”

 

Jean-Pierre Sauvage during his lecture at the 67th Lindau Meeting, Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings

Jean-Pierre Sauvage during his lecture at the 67th Lindau Meeting, Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings

The field less familiar to him at that time is called chemical topology, and it has foundations in mathematics and biological molecules. Topology is the study of infinitely deformable objects. Mathematicians classify topological knots as identical if they have the same number of loops and crossings, even if their shapes appear drastically different. Topological knots can also be found in biological structures. Some bacteria have a loop of DNA, and two interlocking rings of nucleic acid can appear as an intermediate during cell replication. In viruses that infect bacteria, intertwined cyclic proteins can provide rigidity to their outer shells.

In 1961, H. L. Frisch and E. Wasserman, at Bell Labs, connected topology to the chemical world, publishing ideas to synthesise molecules with interlocking rings and knots. Three years later, Profs. Schill and Lüttringhaus synthesised the first molecule with two interlocking rings, in an elegant, but lengthy, process that built each ring of the [2]catenane sequentially.

About twenty years later, Sauvage recognised that his copper catalyst pre-assembled the interlocking portion of the catenane, providing a fast and efficient route to the simplest molecular chain. In 1983, he, along with Christiane Dietrich-Buchecker and J.P. Kintzinger, synthesised a [2]catenane in two steps, compared to the 15 steps needed in the previous synthesis. Sauvage says the researchers knew their work was novel, but they partly hid it in the literature, publishing in a lesser-read journal and writing the article in French. Although the paper remains one of the few French papers of his career, the concept of templating catenane synthesis has become a standard method in the field.

 

A molecule with interlocking rings syntheised by Jean-Pierre Sauvage and Christiane Dietrich-Buchecker in 1983. Credit: Wikimedia Commons

A molecule with interlocking rings synthesised by Jean-Pierre Sauvage and Christiane Dietrich-Buchecker in 1983. Credit: Wikimedia Commons

Over the next decade, Sauvage and his group synthesised and characterised molecules with more complex topologies, including a doubly-interlocking catenane and molecular trefoil knot with three loops and three crossings.

As the researchers continued to follow their interest in the challenge of making molecules with novel structures, they also developed an interest in molecular motion. In interlocking rings, for example, one ring can rotate around the other. With a reliable way to make a variety of interlocking molecules, researchers could then build new structures, experiment with ways to control the motion, and then convert that motion to work in molecular machines – advances achieved by Sauvage’s colleagues, co-laureates, and friends J. Fraser Stoddard and Bernard L. Feringa.

From the story of his research, Sauvage had four pieces of advice for the young scientists:

Novelty is the most important thing when choosing research, and he stressed the importance of working in a team, interacting with other scientists inside or outside your group. Moving to an unfamiliar field can be very beneficial, Sauvage said. And although that jump can be intimidating, he encouraged the young scientists to be self-confident: “Do not ask yourself whether you are good enough to tackle a new problem: Just do it!”

#LiNo17 Daily Recap – Thursday, 29 June

Thursday was the last day in Lindau but not the last day of the meeting. Friday is going to take the participants to Mainau Island, so while they are enjoying their last day on the picturesque island, let’s take a look at what happened yesterday. Here are our highlights from Thursday:

 

Video of the day:

All six panelists – Nobel Laureates Sir John E. Walker and Dan Shechtman, Wiltrud Treffenfeldt (Chief Technology Officer of Dow Europe GmbH), May Shana’a (Head of Research & Developmen of Beiersdorf AG) and young scientist Thomas L. Gianetti from ETH Zurich as well as chairwoman Alaina G. Levine – have strong opinions on “Science Careers” and gave excellent advise for #LiNo17 participants.

You are welcome to browse through our mediatheque for more panel discussions, lectures and other informative videos.

 

Picture of the day:

Nobel Laureate Peter Agre’s lecture on “Aquaporin Water Channels” was not only educational, but also made the young scientists laugh. Most definitely one of the best pictures of Thursday.

67th Lindau Nobel Laureate Meeting Chemistry, 25.06.2017 - 30.06.2017, Lindau, Germany, Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings Audience in Peter Agre's lecture

For even more pictures from the Lindau Nobel Laureate Meetings, past and present, take a look at our Flickr account.

 

Blog of the day:

When Nobel Laureates come to Lindau, photographer Volker Steger presents each with a surprise task. Find out what it is and how the laureates “sketch their science”.

Sketches of Science Slider

Do take a look at more of our inspring blog posts.

 

Tweets of the day:

 

Last but not least, follow us on Twitter @lindaunobel and Instagram @lindaunobel and keep an eye out for #LiNo17

We will keep you updated on the 67th Lindau Nobel Laureate Meeting with our daily recaps. The idea behind it is to bring to you the day’s highlights in a blink of an eye. The daily recaps will feature blog posts, photos and videos from the mediatheque.

 

#LiNo17 Daily Recap – Tuesday, 27 June 2017

We are already three days into this year’s chemistry meeting and there are so many interesting things happening. We have collected a huge amount of exhilarating pictures, exceptional lectures and thought-provoking blog contributions. So you can guess that there is so much more that you should definitly check out on our mediatheque than we present to you in our daily recap . Enjoy the following highlights!

 

Video of the day:

“This meeting is about mentorship, and it’s about the future, it’s not about the Nobel Laureates, it is [in fact] about mentoring the next generation of scientists – OUR BEST HOPE FOR THE FUTURE” – Brian Malow has provided us with a live video featuring seven young scientists.

 

 

Picture of the day:

After having the Poster Flashes on Monday, our Poster Session proved to be a success. Frank Biedermann, a young scientist explaining his research about “Supramolecular Sensing Ensembles” to Nobel Laureate Erwin Neher.

67th Lindau Nobel Laureate Meeting Chemistry, 25.06.2017 - 30.06.2017, Lindau, Germany, Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings Poster Session

 

For even more pictures from the Lindau Nobel Laureate Meetings, past and present, take a look at our Flickr account.

 

Blog of the day:

“When scientific issues become publicly controversial, Nobel Laureates have a history of making strong statements at the Lindau Nobel Laureate Meetings,” writes Melissae Fellet in her new article on science in a post-truth era. Politics and the question of what scientists can do to rebuild trust is one of the main topics being discussed by the participants of the 67th Lindau Meeting.

Post-truth_Slider

Press Talk on ‘Science in a Post-Truth Era’ hosted by Deutsche Welle during the 67th Lindau Meeting. Photo/Credit: Julia Nimke/Lindau Nobel Laureate Meetings

Do take a look at more of our exciting blog posts.

 

Tweets of the day:

 

Last but not least, follow us on Twitter @lindaunobel and Instagram @lindaunobel and keep an eye out for #LiNo17

 

Over the course of the next four days, we will keep you updated on the 67th Lindau Nobel Laureate Meeting with our daily recaps. The idea behind it is to bring to you the day’s highlights in a blink of an eye. The daily recaps will feature blog posts, photos and videos from the mediatheque.

#LiNo17 Daily Recap – Monday, 26 June 2017

Yesterday, the scientific programme of the 67th Lindau Nobel Laureate Meeting commenced. It was a fantastic day full of science and exchange – this short recap can only give you a glimpse of everything that happened, but for us the following are our personal highlights!

 

Video of the day:

The first of today´s many inspirational lectures was the one given by Bernard L. Feringa, 2016 Nobel Laureate in Chemistry. He took the young scientist on a journey into the world of molecular switches and motors, the process of discovery and his personal experiences through his scientific career. In particular, he addressed how fundamental questions and molecular beauty have guided him on this journey.

 

Picture of the day:

Nobel Laureate Martin Chalfie enjoys interacting with young scientists.

67th Lindau Nobel Laureate Meeting Chemistry, 25.06.2017 - 30.06.2017, Lindau, Germany, Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings,  Young Scientists in talk with Martin Chalfie

 

 

For even more pictures from the Lindau Nobel Laureate Meetings, past and present, take a look at our Flickr account.

 

Blog post of the day:

Mexico hosted the International Day on Monday. A good reason for us to feature a young scientist from Mexico, Ana Torres, who said: “I urge each woman […] to play an active role in our nation.”

Do take a look at more exciting blog posts.

 

Tweets of the day:

 

Last but not least, follow us on Twitter @lindaunobel and Instagram @lindaunobel and keep an eye out for #LiNo17

 

Over the course of the next five days, we will keep you updated on the 67th Lindau Nobel Laureate Meeting with our daily recaps. The idea behind it is to bring to you the day’s highlights in a blink of an eye. The daily recaps will feature blog posts, photos and videos from the mediatheque.

#LiNo17 Daily Recap – Sunday, 25 June 2017

“I close my remarks by asking the young students gather this week at the Lindau Nobel Laureate Meeting to consider joining the effort to combat climate change.” – Steven Chu

Yesterday, the 67th Lindau Nobel Laureate Meeting started in grand fashion with the festive opening ceremony featuring the warm and heartfelt welcome address by Countess Bettina Bernadotte and a very poignant and moving keynote by Steven Chu. The Nobel Laureate himself was, unfortunately, unable to attend, but his fellow laureate William E. Moerner luckily stepped in to deliver the powerful speech on “Science as an Insurance Policy to the Risks of Climate Change”.

 

Video of the day:

“A changing climate does not respect national boundaries.”
First highlight is Steven Chu’s keynote, read by William Moerner. Chu addressed the highly topical issue of climate change and reminded all of us how important it is to treat the earth well.

Obviously, this is not the only video from yesterday and today! You are more than welcome to browse through our mediatheque for more.

 

Picture of the day:

Standing Ovations
William Moerner’s presentation of Steven Chu’s keynote was one of the most moving moments.

67th Lindau Nobel Laureate Meeting, 25.06.2017, Lindau, Germany

67th Lindau Nobel Laureate Meeting, 25.06.2017, Lindau, Germany

For even more pictures from the Lindau Nobel Laureate Meetings, past and present, take a look at our Flickr account.

 

Blog post of the day:

“A Stellar Meeting Where the Stars Shine Bright, the Science Is Chill, and the Networking Is Chem-Tastic.”
Another highlight is the blog post from science writer Alaina G. Levine. She is back in Lindau for #LiNo17 and gives a preview of the panel discussion on science careers that she will chair on Thursday (replacing Karan Khemka).

Do take a look at more exciting blog posts.

 

Tweets of the day:

 

 

Last but not least, follow us on Twitter @lindaunobel and Instagram @lindaunobel and keep an eye out for #LiNo17

 

Over the course of the next six days, we will keep you updated on the 67th Lindau Nobel Laureate Meeting with our daily recaps. The idea behind it is to bring to you the day’s highlights in a blink of an eye. The daily recaps will feature blog posts, photos and videos from the mediatheque.

Imagine a World Without Electrical Sockets

Photo: Courtesy of Il Jeon

Photo: Courtesy of Il Jeon

My research involves the development of new materials and applying them to energy devices. There are three types of materials that I mainly focus on: carbon allotropes, transition metal dichalcogenides and organic surface modifiers. I produce and modify these materials to use them in photovoltaics, such as specific types of solar cells. As the paradigm of electronics is shifting to flexibility, low-cost and environmental friendliness, I believe replacing conventional materials by new materials that are flexible, cheaper and more ecological can keep energy devices abreast of this. Ultimately, we can expect to see devices that are fully composed of carbon allotropes, transition metal dichalcogenides and organic compounds. This will lead to a future of wearable energy technology in which people will treat solar energy the way we treat Wi-Fi and Bluetooth these days. Imagine charging your mobile phones from indoor lights and a world without electrical sockets. It goes without saying that this could solve the present-day energy and environmental issues.

 

Photo: Courtesy of Il Jeon

Photo: Courtesy of Il Jeon

There is a good reason why I am working on this research topic. I have had various research experiences both in academia and industry. Just like Steve Jobs said in the commencement address at Stanford, connecting dots is the root innovation that can lead to breakthroughs in science. Therefore, I wanted to connect the dots from my past career. I hold degrees in chemistry at undergraduate and graduate levels. This laid the foundation for the material studies that I am doing now. Then, the work experience at a South Korean conglomerate, LG Display Co. ltd., where I developed organic light emitting devices (OLED) and quantum dot displays, sparked my interest in energy devices. This is due to the fact that energy devices have a similar working mechanism to display devices, and I wanted to work on something that addresses the societal issues directly.

 

Photo: Courtesy of Il Jeon

Photo: Courtesy of Il Jeon

There are three key components to my research: growth, synthesis and fabrication. I grow carbon allotropes and transition metal dichalcogenides by using chemical vapour deposition, which is a chemical process to form a high quality material using high temperatures in a vacuum so that it does not catch fire. Once they are produced, I modify those using organic synthesis to render new functionalities to the materials. Various fullerene derivatives and modified graphene are good examples of this. These materials are characterised and utilised in solar cell fabrication. The end goal is to improve the performance of energy devices using newly developed materials. I generally spend half of my week on material development and the other half on device fabrication. Some people say that I cannot catch two hares at the same time and I should focus on either material science or device engineering. However, I am a competitive person so I believe you can catch more than two hares if you work just that much harder. 

On the Trail of Nobel Prizes

The new Lindau Science Trail serves as a permanent embodiment of the Lindau Nobel Laureate Meetings, their history and first and foremost makes “Nobel knowledge” accessible to everyone. The Lindau Science Trail can be followed not only by those living in and around the picturesque city of Lindau; visitors from all over the world can go on their very own journey of discovery. 
On knowledge pylons that are spread out all around Lindau, one can learn more about the everyday applications of scientific phenomena. And who knows, there might just be a Nobel Laureate waiting around the corner in Lindau you surely can’t rule it out.

Picture/Credit: Lindau Nobel Laureate Meetings

The knowledge pylon at the harbour of Lindau. Picture/Credit: Lisa Vincenz-Donnelly/Lindau Nobel Laureate Meetings

 

The Lindau Spirit for everyone

Knowledge should be freely available to everyone at all times. This credo is at the heart of the philosophy of the Foundation and the Council for the Lindau Nobel Laureate Meetings.
For more than 65 years, Nobel Laureates and young scientists from all over the world have come together in Lindau once a year to exchange ideas and learn from each other. The “Lindau Spirit”, which inspires the participants year after year, can now be experienced on the Lindau Science Trail by everyone throughout the entire year.
The Lindau Science Trail consists of a total of 21 knowledge pylons, 15 of which can be discovered on the island of Lindau. On the mainland of Lindau and on Mainau Island there are three pylons each waiting to be explored.

 

This map shows the locations of the different knowledge pylons which can now be discovered on the island of Lindau. Picture/Credit: Lindau Nobel Laureate Meetings

This map shows the locations of the different knowledge pylons which can now be discovered on the island of Lindau. Picture/Credit: Lindau Nobel Laureate Meetings

 

The Knowledge Pylons – Something for Everyone

At the knowledge pylons, explorers big and small can learn more about various scientific discoveries and about the different Nobel Prize disciplines in English as well as in German. The pylons cover the three natural science disciplines – Physics, Chemistry and Physiology/ Medicine – as well as Peace and Literature. Two knowledge pylons explain economic theories in a manner which is easily understandable; two others provide insight into how the Lindau Nobel Laureate Meetings started and tell the story behind the Nobel Prizes. You don’t have to be a science expert to understand the explanations on the pylons. The Lindau Science trail addresses grown-ups as well as children. There is a special children’s section on every pylon.

Spotlight on the “Lindau” Nobel Laureates: The Nobel Laureates that have visited the Lindau Meetings thus far will be honoured at one central spot: on the “kleiner See” that separates mainland Lindau from Lindau island there will soon be a pier where the names of all the Nobel Laureates who have already visited the Lindau Nobel Laureate Meetings will be listed – more than 450 laureates.

 

Virtual Science Trail: Discovering Science With the App

A dedicated app will allow you to meet the Nobel Laureates virtually on the Science Trail. At six different locations, virtual Nobel Laureates explain why they have received the Nobel Prize. You can even take a selfie with them!
The app also gives you the opportunity to test your freshly acquired ‘Nobel Knowledge’. While ‘hiking’ on the Science Trail you can try to answer the numerous quiz questions. The Rallye can only be taken right on the spot, not at locations remote from the Lindau Science Trail – an open invitation for all science enthusiasts to come and visit Lindau and take the chance to meet Nobel Laureates.

Picture/Credit: preto_perola/istockphoto.com, illustrations: eatmefeedme; editing: rh

With the Lindauer Wissenspfad App, one can test one’s knowledge. Picture/Credit: preto_perola/istockphoto.com, illustrations: eatmefeedme; editing: rh

Download the App here.

 

Experience the Lindau Science Trail Back Home or in Your Classroom

Those who cannot physically come to Lindau can still discover the town, the Nobel Laureates and their research by virtually walking along the Science Trail and visiting the pylons in the app. Teachers can use it in the classroom as well.

If the Science Trail is also available virtually what’s the point in taking a field trip to Lindau and experiencing it first-hand? In addition to jointly completing the Science Trail and the Rallye, a surprise is waiting for all students here in Lindau. Teachers, who are interested in a school field trip to Lindau, may contact the Council for the Lindau Nobel Laureate Meetings for more information and additional material.

Pupils exploring a knowledge pylon. Picture/Credit: Lindau Nobel Laureate Meetings

Pupils exploring a knowledge pylon. Picture/Credit: Lisa Vincenz-Donnelly/Lindau Nobel Laureate Meetings

The realisation of the Lindau Science Trail was enabled by the support of the city of Lindau and the Prof. Otto Beisheim Stiftung.

 

Guided tour for #LiNoEcon participants: Tuesday, 22 August 2017 at 16.00 hrs (starting outside the main entrance of the city theatre)

Den Nobelpreisen auf der Spur

Der Lindauer Wissenspfad macht ab sofort die Lindauer Nobelpreisträgertagungen, deren Geschichte und vor allem das „Nobelwissen“ für Groß und Klein sicht- und (be-)greifbar. Auf den Spuren von Nobelpreisträgern und ihrer Forschung können alle Lindauerinnen und Lindauer, aber auch Gäste aus der ganzen Welt, auf Entdeckungstour durch Lindau gehen. An insgesamt 21 Wissenspylonen lernen sie dabei mehr über wissenschaftliche Alltagsphänomene. Vielleicht kommt dabei auch der eine oder andere Nobelpreisträger um die Ecke – in Lindau immerhin durchaus denkbar…

Die Leuchtturmstele am Lindauer Hafen. Picture/Credit: Lindau Nobel Laureate Meetings

Die Leuchtturmstele am Lindauer Hafen. Picture/Credit: Lindau Nobel Laureate Meetings

 

Der Lindau Spirit für Alle

Wissen sollte immer und überall frei zur Verfügung stehen. Das gehört zum Kernanliegen von Stiftung und Kuratorium der Lindauer Nobelpreisträgertagungen, zu ihrer Mission Education. Die Idee zum Bau des Lindauer Wissenspfades ist daraus entstanden. Die Stadt Lindau hat sie bei der Umsetzung unterstützt.
Schon seit über 65 Jahren kommen in Lindau einmal im Jahr Nobelpreisträger und junge Nachwuchswissenschaftler aus der ganzen Welt zusammen, um sich auszutauschen und voneinander zu lernen. Der Lindau Spirit, von dem die Teilnehmer dabei inspiriert werden, soll jetzt auf dem Lindauer Wissenspfad für jeden und vor allem das ganze Jahr über erlebbar sein.
Der Wissenspfad besteht aus insgesamt 21 Wissenspylonen, 15 davon können auf der Lindauer Insel entdeckt werden. Auf dem Lindauer Festland und auf der Insel Mainau stehen jeweils drei Stelen zur Erkundung bereit. Auf der Karte sind die einzelnen Standorte auf der Lindauer Insel zu sehen.

Die Karte zeigt die verschiedenen Standorte der Wissenspylone, die ab sofort in Lindau entdeckt werden können. Picture/Credit: Archimedes Exhibitions GmbH

Die Karte zeigt die verschiedenen Standorte der Wissenspylonen, die ab sofort in Lindau entdeckt werden können. Picture/Credit: Lindau Nobel Laureate Meetings

 

Für jeden etwas dabei – die Wissenspylonen

Auf den unterschiedlichen Pylonen lernen kleine und große Entdecker wissenschaftliche Begebenheiten aus den Bereichen der Nobelpreisdisziplinen kennen und verstehen: es gibt Physik-, Chemie-, und Medizinpylonen, aber auch eine Friedens- und eine Literaturstele. Zwei Wissenspylonen erklären Theorien aus den Wirtschaftswissenschaften, zwei weitere Stelen erläutern, wie die Lindauer Nobelpreisträgertagungen entstanden sind und was sich hinter dem Nobelpreis verbirgt. Man muss kein Naturwissenschafts-Experte sein, um die Erklärungen auf den Pylonen zu verstehen. Der Wissenspfad richtet sich an viele unterschiedliche Menschen; die Kinderspuren auf jedem Pylon bringen das ‚Nobelwissen‘ auch den jüngsten Forschern näher.

Natürlich bekommen die Nobelpreisträger auf dem Wissenspfad einen besonderen Platz: auf den Stelen wird nicht nur ihre Forschung sicht- und erlernbar gemacht, zukünftig werden sie an der zentralen Station auch besonders geehrt: Auf dem kleinen See wird es in Lindau bald einen Steg geben, der die Namen der Nobelpreisträger verzeichnet, die schon einmal in Lindau zu Gast waren. Und das sind schon mehr als 450 Laureaten!

 

Virtueller Wissenspfad: Mit der App auf Entdeckungstour

In Zukunft kann man den Nobelpreisträgern auf dem Wissenspfad auch virtuell begegnen. Die App macht das möglich: an sechs verschiedenen Standorten erklären virtuelle Nobelpreisträger, wofür sie den Nobelpreis bekommen haben. Sogar ein Selfie mit Preisträgern ist möglich!
Entlang des Wissenspfads können alle ‚Wissenspfadler‘ das Erlernte in der Rallye testen und über Quizfragen knobeln. Dafür muss man allerdings vor Ort sein. Damit möglichst viele Leute den Weg nach Lindau aufnehmen und den Wissenspfad auch in echt kennen lernen, werden die virtuellen Nobelpreisträger und die Quizfragen nämlich nur am Pylonenstandort freigeschaltet.

Mit der Lindauer Wissenspfad-App kann man in der Rallye z.B. Quizfragen beantworten. Picture/Credit: preto_perola/istockphoto.com, illustrations: eatmefeedme; editing: rh

Mit der Lindauer Wissenspfad-App kann man in der Rallye z.B. Quizfragen beantworten. Picture/Credit: preto_perola/istockphoto.com, illustrations: eatmefeedme; editing: rh

 

Der Wissenspfad auf dem Sofa oder im Klassenraum

Aber auch diejenigen, die nicht nach Lindau kommen (können), haben die Möglichkeit, einen Blick auf Lindau, die Nobelpreisträger und ihre Forschung zu werfen: sie können den Wissenspfad zuhause virtuell ablaufen und die Pylonen in der App abrufen. Das können sich auch Lehrer im Unterricht zu Nutze machen.
Der Wissenspfad lädt Schulklassen aber auch explizit ein, nach Lindau zu kommen und sich auf die Spur der Nobelpreise zu machen. Vor Ort kann man deshalb auch gemeinsam einen Preis gewinnen! Interessierte Lehrer können sich gerne mit dem Kuratorium für die Tagungen der Nobelpreisträger in Lindau in Verbindung setzten und weitere Informationen und Materialien erhalten.

Schüler an einem Wissenspylon. Picture/Credit: Lindau Nobel Laureate Meetings

Schüler an einem Wissenspylon. Picture/Credit: Lindau Nobel Laureate Meetings

 

Ermöglicht wurde der Wissenspfad durch die Unterstützung der Stadt Lindau und der Prof. Otto Beisheim Stiftung.

Big Data Analytics Deliver Materials Science Insights

Finding patterns and structure in big data of materials science remains challenging, so researchers are working on new ways to mine the data to uncover hidden relationships. Credit: Hamster3d/iStock.com

Finding patterns and structure in big data of materials science remains challenging, so researchers are working on new ways to mine the data to uncover hidden relationships. Credit: Hamster3d/iStock.com

 

Developing new materials can be a lengthy, difficult process and innovations in the field come through a combination of serendipity and methodical hard work. Researchers perform many rounds of synthesising new materials and testing their properties, using their chemical knowledge and intuition to relate a material’s structure to its function. The result is materials for tough body armour, thin, powerful batteries or lightweight aircraft components, among many other applications.

To speed materials discovery, researchers are now asking computers to help. Algorithms similar to those that organise our email, photos and online banking can also be used to find patterns in chemical data that relate to a material’s structure and composition.

Photo: R. Schultes/Lindau Nobel Laureate Meetings

Walter Kohn, Nobel Laureate in Chemistry 1998. Photo: R. Schultes/Lindau Nobel Laureate Meetings

Traditional computer modelling of materials uses methods recognised with the Nobel Prize in Chemistry 1998. Walter Kohn and John Pople shared the prize that year for developing algorithms that modelled molecules using quantum mechanics, improving the accuracy of molecular structure and chemical reactivity calculations. The techniques that Kohn and Pople each developed revolutionised computational chemistry and have continued to be improved to give highly accurate results.

These methods typically work well to predict structural and electronic properties of crystalline metals and metal oxides. But these predictions do not always match measured properties of complex bulk materials and their surfaces under experimental conditions. Predicting properties of bulk materials and their surfaces using current quantum mechanical methods requires lengthy calculations using supercomputers.

To speed up these calculations, chemists are analysing public databases of atomic, chemical and physical properties to find combinations that predict materials properties. They use big-data analytics tools to search for meaningful patterns in the large amounts of data. Algorithms like this already influence our daily lives by filtering spam email, suggesting other items for online shoppers, detecting faces in digital photos, and identifying fraudulent credit card transactions. Although materials scientists have much less data than email providers or online stores, there is still enough publicly available data about atomic properties such as electronegativity, atomic radius and bonding geometry as well as the geometric and electronic structures of various materials that the same analysis tools are still useful. Materials databases include Materials Project in the United States and the Novel Materials Discovery Laboratory in Europe, among others.

Computational materials discovery often involves making predictions for an entire class of materials, such as metals, metal oxides or semiconductors. However, a global prediction may not apply to certain subgroups of materials within that class.

Bryan Goldsmith, a Humboldt postdoctoral fellow at the Fritz Haber Institute of the Max Plank Society in Berlin and a young scientist attending the 67th Lindau Nobel Laureate Meeting and his colleagues recently applied a data analytics tool called subgroup discovery to see how physical and chemical properties relate to the structure of gold nanoclusters containing varying numbers of atoms. Gold clusters are a model example of how materials properties change from the bulk to nanoscale. Bulk gold is shiny, inert and yellow in color. Gold nanoparticles, however, are red, catalytic and have dynamic structures.

 

The Novel Materials Discovery Laboratory, a European Center of Excellence established in the fall of 2015, has the world’s largest collection of computational materials science data.

 

Using molecular dynamics simulations, the researchers calculated 24,400 independent configurations of neutral, gas-phase gold clusters containing 5 to 14 atoms at temperatures from -173 to 541 °C (100 to 814K). Next, they predicted the ionisation potential, electron affinity and van der Waals forces between atoms in a cluster, among other properties.

Then the researchers generated various mathematical combinations of the predicted chemical data to produce a large number of possible relationships between different subgroups of gold clusters. Finally, they used subgroup discovery to find the relationships that best predicted cluster structure and their electronic properties.

The algorithm rediscovered the known property that gold nanoclusters with even number of atoms are semiconducting, whereas those with an odd number of atoms are metallic. It also revealed something new about forces that stabilise nonplanar gold clusters: van der Waals forces typically thought to stabilise interactions between molecules contributed more to the stability of nonplanar clusters than planar clusters.

 

A computational prediction for a group of gold nanoclusters (global model) could miss patterns unique to nonplaner clusters (subgroup 1) or planar clusters (subgroup 2). Credit: New J. Phys.

A computational prediction for a group of gold nanoclusters (global model) could miss patterns unique to nonplaner clusters (subgroup 1) or planar clusters (subgroup 2). Credit: Goldsmith et al. Uncovering structure-property relationships of materials by subgroup discovery. New J. Phys. 19 (2017) 013031 (CC BY 3.0)

By starting their data analytics with known properties, the researchers hope to develop predictive models that retain physical and chemical information that is easy for other scientists to interpret, Goldsmith says. “We believe that if you can find these simple equations, they can help guide you to deeper understanding, and hopefully lead to new chemistry and materials insights.”

With more powerful computers, larger databases and novel ways to use the data being developed, data analytics could become increasingly important to researchers synthesising new materials. A database of failed reactions could guide the direction of future experiments, and data analytics tools could speed the interpretation of spectra used to characterise molecules and materials. And in time, researchers hope to predict the outcome of a catalytic reaction or materials synthesis. “Data analytics should be an indispensable part of every chemist and material’s scientist toolkit,” Goldsmith says.