#LiNo16: A Retrospective

The 2016 Lindau Nobel Laureate Meeting was a  week full of knowledge, experiences, fun moments, and inspiring people.

 

1

Photo: Irene Alda

It was great to receive tips from David Gross (discovery of asymptotic freedom, 2004) on being creative: be interested in more things outside physics; and dealing with frustration: work always with more than one problem at a time. Although not surprising, did you know who his favorite Nobel Laureate is? It’s Albert Einstein. I loved that Kurt Würthrich (developed NMR, 2002) used to practice high jump (there is a picture on Nature 520, 2015) and that Bill Phillip’s (laser cooling, 1997) secret to happy life is a positive attitude and finding balance in the different phases of your life. His description of a good day: “a good day is when I learn something new”.  One of the most shocking things I learned at the meeting was that we burn 50-75 of ATP daily, pretty rad, right? On a day-to-day level, we learned that a great way to organize workload is Eisenhower’s urgent and important principle.

 

“Scientists are the grown ups that remain as curious about the world as when they were children” – Carl E. Wieman (first BEC, 2001).

 

3

Klaus von Klitzing during his lecture. Photo: Irene Alda

It was unique to see the more “human” side of such bright and inspiring scientists. Stefan W. Hell (developed super-resolved fluorescence microscopy, 2014) was motivated to break the diffraction limit and wanted to do something that would be useful for future generations; and Klaus von Klitzing’s (discovery of integer quantum Hall effect, 1985)  three things you need to get a Nobel prize are: to cross lake Constance, eat chocolate, and buy yourself a Nobel prize medal (which you could go touch if you asked him). And did you know that George F. Smoot (discovery of black body form and anisotropy of the cosmic microwave background radiation, 2006) appeared on the TV series the Big Bang Theory?

We discussed how the metrics (h-index, etc) in Science are needed and dangerous. Oh, and not to get frustrated if you are initiating a field: it is hard to publish in high-impact journals.

 

“If we knew what we were doing it wouldn’t be called research” – Brian P. Schmidt (evidence of accelerated expansion of the Universe, 2011).

 

One of the big tasks for science is to improve teaching and education in physics. I’ve been fortunate to see different teaching methods and in Spain we need to address many issues. Some books recommendations by Carl E. Wieman are “How learning works” and “How people learn”. In the last the discussion of the meeting there were 4 conclusions about improving education in science: to motivate and pay teachers well (primary and secondary levels), to promote science via the media (government back up),  to inspire leaders to start the change, and to develop a good mentoring system so the student can study at home and go back to the professor with questions.

 

“Every scientist should have a secret garden” – Martin Karplus (development of multi-scale models for complex chemical systems, 2013).

 

#LiNo16 last day took place on Mainau Island. Irene took the chance to visit the island's butterfly exhibit. Apparently, butterflies like science, too. Photo: Irene Alda

#LiNo16 last day took place on Mainau Island. Irene took the chance to visit the island’s butterfly exhibit. Apparently, butterflies like science, too. Photo: Irene Alda

The social aspect was amazing. I got to meet so many different and unique minds. It’s outstanding and beautiful to be surrounded by such diversity. The peak moment for the week for me was on the trip back from Mainau island when we all danced “The Macarena” (I think that dancing is one of the best ways to let go).

Attending to this meeting has been a continuous exposure to be “wowed”.

#LiNo16 Daily Recap – Friday, 1 July 2016

On Friday, 1 July the 66th Lindau Nobel Laureate Meeting concluded with the traditional boat trip to Mainau Island, home of the Bernadotte family.

Video of the day

All lectures available now!

Head over to the mediatheque and relive all of the wonderful lectures held by Nobel Laureates.

Picture of the day

Nobel Laureate Bill Phillips with young scientists during the picnic on Mainau Island. Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meeting

Nobel Laureate Bill Phillips with young scientists during the picnic on Mainau Island. Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meeting

 

Blog post of the day

To search for dark matter with the help of antimatter sounds like something from a science fiction movie. But that’s what the Alpha Magnetic Spectrometer AMS was designed to do – the unique instrument is the brainchild of Nobel Laureate Samuel Ting.

Read article: How Positrons Can Help Explain the Universe

Tweets of the day

War da was mit kosmischen Gravitationswellen?

Solch eine Aufregung im Vorfeld einer Pressekonferenz ist selten: jede Menge Getrommel und gleichzeitig Geheimniskrämerei – etwas ganz Großes sollte am 17. März 2014 im Harvard-Smithsonian Center for Astrophysics verkündet werden. Als es um zwölf Uhr mittags endlich losgeht, berichten die aufgeregten Forscher um John Kovac, dass sie Spuren von Gravitationswellen in der kosmischen Hintergrundstrahlung entdeckt hätten, also dem „Cosmic Microwave Background“, kurz CMB. Diese sollen aus der Zeit der kosmischen Inflation stammen, also aus dem allerersten Moment nach dem Urknall. Gleichzeitig erschien eine wissenschaftliche Publikation, die allerdings nicht das sonst übliche Peer-Review-Verfahren durchlaufen hatte; diese Prüfung auf Herz und Nieren wurde erst in den folgenden Monaten nachgeholt.

Zwei Teleskope der Amundsen-Scott Südpolstation: rechts das BICEP2-Teleskop, daneben das

Zwei Teleskope der Amundsen-Scott-Südpolstation: rechts das BICEP2-Teleskop, daneben das “South Pole Telescope”. BICEP ist die Abkürzung von “Background Imaging of Cosmic Extragalactic Polarization”. Foto: Amble, CCL 3.0

Weshalb die ganze Aufregung? Hinweise auf die kosmische Inflation mithilfe von Gravitationswellen zu finden, bedeutet „zwei Fliegen mit einer Klappe zu schlagen“. Das Konstrukt der Inflation ist bislang eine reine Theorie. Es stammt aus den 1980er Jahren und sollte Unstimmigkeiten in der Urknalltheorie ausbügeln. Es postuliert ein unvorstellbar schnelles Ausdehnen des Kosmos im winzigsten Bruchteil einer Sekunde nach dem Urknall. Viele Forscher glauben nun, dass eine solche gewaltige Ausdehnung Gravitationswellen ausgelöst haben müsste. Diese Wellen wiederum sind ein zentraler Bestandteil von Einsteins Allgemeiner Relativitätstheorie aus dem Jahr 1915 – diese bildet nach wie vor die Grundlage des heutigen Standardmodells der Kosmologie.

Einsteins berühmte Theorie besagt, dass Raum und Zeit nicht absolut sind, sondern relativ: Zeit vergeht messbar schneller in der Bergen oder langsamer bei sehr hohen Geschwindigkeiten, und der Weltraum wird durch die Gravitationskraft großer Massen gekrümmt. Bewiesen wurde das in der Sonnenfinsternis 1919, als die Sterne in Sonnennähe scheinbar ihre Position verändert hatten – in Wirklichkeit war nur ihr Licht von der Sonnenmasse gekrümmt worden. Kurz: Mit der herkömmlichen Newtonschen Physik kann man Brücken bauen, aber keine Satelliten. Einstein sagte voraus, dass energiereiche Ereignisse wie kollidierende Schwarze Löcher Wellen in der Raumzeit auslösen würden, welche diese enormen Energiemengen wegtransportieren.

Physiknobelpreisträger Brian Schmidt mit einem Bild seines berühmtesten Vorgängers während seines Vortrags 2014 zum Thema Kosmologie. Seinen aktuellsten Vortrag aus dem Jahr 2015 finden Sie hier. Foto: Rolf Schultes/LNLM

Physiknobelpreisträger Brian Schmidt mit einem Bild seines berühmtesten Vorgängers während seines Kosmologie-Vortrags 2014 in Lindau. Seinen aktuellsten Vortrag von 2015 finden Sie hier. Foto: Rolf Schultes/LNLM

Diese flüchtigen Wellen sind zwar noch nie direkt beobachtet worden, aber es gibt indirekte Hinweise auf sie: Russel Hulse und Joseph Taylor erhielten 1993 den Physik-Nobelpreis für die Entdeckung eines Systems aus zwei Pulsaren, das Energie in genau jener Menge zu verlieren scheint, die Einsteins Theorie vorhersagt. Seit dieser Entdeckung 1974 hat sich ein neues wissenschaftliches Feld etabliert, das diese Wellen jagt. Die Forscher sind hochgradig vernetzt, denn ein Ereignis an einem Instrument müsste sich durch die anderen Instrumente bestätigen lassen. Die wichtigsten Instrumente auf der Jagd nach Gravitationswellen sind Laser-Interferometer. Manche dieser Laserstrahlen sind mehrere Kilometer lang: Man hofft, dass das Laserlicht von den lichtschnellen Gravitationswellen minimal, aber messbar verändert wird. Solche Anlagen stehen in den USA, aber auch bei Hannover, in Italien und in Japan.

In Zukunft werden sogar spezielle Weltraumteleskope nach Gravitationswellen suchen: Diesen November soll die „LISA pathfinder mission“ der ESA starten, um die Technologie für die spätere eLISA Mission („Evolved Laser Interferometer Space Antenna“) zu testen, auch hier geht es um Laser-Interferometrie. Der Start von eLISA ist für die 2030er Jahre angedacht. Doch es gibt auch weitere erdgebundene Beobachtungen: Die Südpol-Teleskope BICEP1 und BICEP2 starrten drei Jahre lang auf dasselbe Stückchen des Südhimmels, um typische Polarisierungen in der Hintergrundstrahlung zu entdecken. Das Resultat ist die spektakuläre Pressekonferenz im März 2014.

Nördlicher Arm des LIGO-Interferometers in Hanford, Washington. LIGO steht für “Laser Interferometer Gravitational-Wave Observatory”. Das dortige Instrument hat zwei

Nördlicher Arm des LIGO-Interferometers in Hanford, Washington. LIGO steht für “Laser Interferometer Gravitational-Wave Observatory”. Das dortige Instrument hat zwei “Arme”, die beide mehrere Kilmeter lang und in einem 90-Grad-Winkel angeordnet sind. Fotograf unbekannt, public domain

Milliarden Euro und Dollar wurden schon in die Suche nach Gravitationswellen oder nach Spuren der kosmische Inflation investiert, von zahllosen Wissenschaftskarrieren ganz zu schweigen. Das erklärt auch die Aufregung bei der Pressekonferenz 2014: Wenn jahrzehntelang mit hohen Kosten gesucht wird, ist die Begeisterung um so größer, wenn man tatsächlich etwas findet. Doch die Monate nach diesem „Superknaller“ brachten Ernüchterung. Schließlich verglich das BICEP2-Team seine Daten mit denjenigen des Planck-Satelliten. Im April 2015 kamen beide Teams gemeinsam zu dem Schluss, dass die „Sensation“ ein Jahr zuvor wohl nichts als kosmischer Staub gewesen sei. Auch Nobelpreisträger Robert Wilson erklärte auf dem 65. Lindauer Nobelpreisträgertreffen diesen Sommer, das BICEP2-Team habe wohl hauptsächlich Staub gesehen. Er war bei der legendären Pressekonferenz anwesend, aber nicht auf der Tribüne; Wilson hatte die kosmische Hintergrundstrahlung in den 1970er Jahren entdeckt.

Nobelpreisträger Robert W. Wilson während seines Vortrags über die Hintergrundstrahlung auf dem 65. Lindauer Nobelpreisträgertreffens. Foto: Adrian Schröder/LNLM

Nobelpreisträger Robert W. Wilson während seines Vortrags über die kosmische Hintergrundstrahlung auf dem 65. Lindauer Nobelpreisträgertreffen. Foto: Adrian Schröder/LNLM

Was bedeutet nun diese neueste Wendung für das Standardmodell der Kosmologie? Es zeigt sich eher unbeeindruckt. Nach wie vor suchen viele Forschergruppen nach Gravitationswellen sowie nach Hinweisen, dass die Inflation wirklich stattgefunden hat. Beide Forschungsrichtungen haben oder planen neue, bessere Instrumente – BICEP3 ist bereits am Start. Und sowohl das BICEP-Team als auch die Kritiker ihrer Interpretation sagen, dass die Forschung mehr und bessere Daten braucht, um Spuren der Inflation im CMB zu finden – falls es sie gibt.

Das Standardmodell steht in dem Ruf, viele Beobachtungen und Entdeckungen erklären zu können, wodurch es immer wieder Bestätigung erfährt. Allerdings gibt es auch ein gewisses Unbehagen angesichts der Tatsache, dass „wir bei 95 Prozent der Materie und Energie annehmen müssen, dass sie aus etwas bestehen, das wir überhaupt nicht kennen“, so Nobelpreisträger Brian Schmidt. Er bezieht sich auf die geschätzten Anteile von 25 Prozent Dunkler Materie und 70 Dunkler Energie im Universum. Die uns vertraute Materie, also der Stoff, aus dem Sterne, Planeten und wir Menschen bestehen, macht nach dieser Theorie nur knapp 5 Prozent der Gesamtmaterie aus. Schmidt hat außerdem einen guten Rat für seine Kollegen parat: „Begegnet dem Universum niemals mit vorschnellen Urteilen. Es macht, was es will, und wir als Wissenschaftler müssen herausfinden, was das ist. Dabei sollten wir nicht der Fehlannahme aufsitzen, dass es sich in irgendeiner Weise um unsere Annahmen scheren würde.“

Drei Himmelskarten der Hintergrundstrahlung von drei verschiedenen Satelliten; jedes Himmelsstück hat eine Fläche von zehn Quadratgrad. Links NASAs

Drei Himmelskarten der Hintergrundstrahlung von drei verschiedenen Satelliten, jedes Himmelsstück hat eine Fläche von zehn Quadratgrad. Links NASAs “Cosmic Background Explorer” COBE, gestartet 1989. WMAP war das nächste NASA-Weltraumteleskop: “Wilkinson Microwave Anisotropy Probe”. Der europäische Planck-Satellit, gestartet 2009, hat die bislang höchste Auflösung. Image: NASA/JPL-Caltech/ESA, public domain

What Happened With Cosmic Inflation?

The procedure was almost unprecedented, the excitement as well: on March 17 last year, astronomers around John Kovac from the Harvard-Smithsonian Center for Astrophysics announced at a press conference that they had found the imprint of gravitational waves on the cosmic microwave background CMB, caused by the earliest moment after the Big Bang, the so-called cosmic inflation, in astronomical data from the South Pole. A scientific paper with these finding was presented at the same time, also with much ado, although it hadn’t undergone the scrutiny of a peer review process yet; this was done in the months after the March presentation.

Two telescopes at the Amundsen-Scott South Pole Station: the BICEP2 telescope (right) and the Sputh Pole Telescope. Photo: Amble, CCL 3.0

Two telescopes at the Amundsen-Scott South Pole Station: the BICEP2 telescope (right) and the South Pole Telescope. BICEP stands for “Background Imaging of Cosmic Extragalactic Polarization”. Photo: Amble, CCL 3.0

But why the excitement, why the secrecy before the press conference, why the sensationalism? Finding proof of inflation theory with the help of gravitational waves is like “killing two birds with one stone”: inflation is a theoretical concept created in the 1980s to smooth out creases in the Big Bang theory. It states that the Universe expanded incredibly fast in a tiny fraction of a second. Many scientists believe that during this brief moment, the monumental expansion of the cosmos would have generated gravitational waves. These waves in turn are a central component Einstein’s theory of general relativity from 1915, that is still the basis for today’s standard model of cosmology.

Einstein’s theory states that time and space are not absolute but relative: time runs faster in high altitudes but slower at fast velocities, as can be measured in the mountains or with satellite clocks; and space can be curved by the gravity of large masses, as was proven in the 1919 solar eclipse when star positions near the Sun seemed to have “shifted”, but in reality only the light rays had been curved by the Sun’s mass. Gravitational waves, that were also predicted by Einstein but never directly detected, are supposed to transport energy away from high-energy events like colliding black holes or pulsars. They are also called “gravitational radiation” or “ripples in spacetime”.

Nobel Laureate Brian Schmidt at his 2014 lecture about Cosmology. Photo: Rolf Schultes/LNLM

Nobel Laureate Brian Schmidt at his 2014 lecture on Cosmology. View his 2015 lecture here. Photo: Rolf Schultes/LNLM

Although never detected directly, there are indirect hints towards the existence of these elusive waves: Russell A. Hulse and Joseph H. Taylor received the 1993 Nobel Prize in Physics for their 1974 discovery of a binary pulsar system that seems to lose energy at a rate that would be compatible with Einstein’s predictions. Since then, a large scientific field, and a closely networked research community, have formed, all trying to find the Holy Grail of Einstein’s theory. Large laser inferometers are located around the globe, some laser beams are several kilometres long, to record the subtle ripples that are supposed to move at the speed of light, and are expected to show up in slight variations of these laser beams. The LIGO instruments in Louisiana and Washington are the most sensitive and part of an international collaboration, with interferometers also located in Germany, Italy, and Japan.

In the future we will even see space interferometers searching for Einstein’s waves: ESA’s LISA pathfinder mission is to be launched this November, to test the technology of a later eLISA mission, the “Evolved Laser Interferometer Space Antenna” that will also try to capture gravitational waves with the help of laser technology; the planned launch date for eLISA is in the 2030s. More recently, the BICEP1 and 2 telescopes at the South Pole have been looking at a patch of the southern sky for three entire years solely to find typical polarizations in the CMB – resulting in the findings presented at the March 2014 press conference.

Northern arm of the LIGO interferometer on Hanford Reservation, Washington. LIGO stands for

Northern arm of the LIGO interferometer on Hanford Reservation, Washington. LIGO stands for “Laser Interferometer Gravitational-Wave Observatory”. The Hanford interferometer has two arms that are several kilometers long, positioned at an 90 degree angle. Photographer: unknown, public domain

Billions of dollars – and countless careers – are invested in finding either gravitational waves or data relating to cosmic inflation. This makes the enthusiasm for the 2014 findings understandable: at the press conference, they were called “grand slam”, “missing link” and “smoking gun for inflation” by Marc Kamionkowski of Johns Hopkins University, who is not a member of the BICEP Collaboration. But over the following months, more and more doubts were raised when the BICEP team and the Planck satellite team compared data, culminating in a joint paper in 2015 stating that a polarizations like the ones measured at the South Pole could also be created by dust from our own galaxy. This summer, Nobel Laureate Robert Wilson told his audience at the 65th Lindau Nobel Laureate Meeting that “the result now is that most of what the BICEP2 people saw is probably dust.” Wilson had received the 1978 Nobel Prize in Physics for his discovery of the CMB in 1964 in the first place.

Nobel Laureate Robert W. Wilson during his lecture at the 65. Lindau Nobel Laureate Meeting on the Cosmic Microwave Background. He was present at the March 2014 press conference, but not part of the panel. Photo: Adrian Schröder/LNLM

Nobel Laureate Robert W. Wilson during his lecture at the 65. Lindau Nobel Laureate Meeting on the Cosmic Microwave Background. He was present at the March 2014 press conference, but not part of the panel. Photo: Adrian Schröder/LNLM

What does this new turn of events mean for the standard model of cosmology? Most of all, the model is firmly in place: researchers keep searching for gravitational waves with interferometers that are increasingly sensitive, and “inflationists” are still searching the CMB for signs of cosmic inflation. Both groups either have or are planning new, more sensitive instruments. All researchers, from the BICEP Collaboration as well as the critics of their interpretations, agree that more data at higher resolutions is required to find the imprint of cosmic inflation on the CMB – if it’s there.

Although the standard model continues to be vindicated by many other experiments, some scientists describe it as “highly unsatisfactory”, like Nobel Laureate Brian P. Schmidt, because “we need to suppose that 95 percent of the Universe is made of types of matter and energy that are not yet identified.” Schmidt is referring to the supposed 25 percent dark matter and 70 percent dark energy, hence the model’s name “cold dark matter model”. The matter we can see – planets, people etc. – supposedly only comprises about 5 percent of all matter. Schmidt also has a piece of advice from his own research: “One should not pre-judge the Universe. The Universe does what it wants and our job is as scientists to figure it out, rather than to assume it should be the way we want it to be.”

The three panels show 10-square-degree patches of all-sky maps created by space-based missions capable of detecting the cosmic microwave background. The first spacecraft, launched in 1989, is NASA's Cosmic Background Explorer, or COBE. NASA's next-generation spacecraft was the Wilkinson Microwave Anisotropy Probe, or WMAP. The most advanced satellite yet of this type is Planck, a European Space Agency mission with significant NASA contributions. Planck, launched in 2009, images the sky with more than 2.5 times greater resolution than WMAP. Image: NASA/JPL-Caltech/ESA, public domain

The three panels show 10-square-degree patches of sky maps created by space missions capable of detecting the cosmic microwave background. The first spacecraft, launched in 1989, is NASA’s Cosmic Background Explorer, or COBE. NASA’s next-generation spacecraft was the Wilkinson Microwave Anisotropy Probe, or WMAP. The most advanced satellite yet of this type is Planck, a European Space Agency mission. Planck, launched in 2009, images the sky with more than 2.5 times greater resolution than WMAP. Image: NASA/JPL-Caltech/ESA, public domain

Reflections of Mainau and Lindau: An eternal reminder of a scientist’s social responsibility

If there was a heaven on Earth for scientists, then it would be found in Bavaria in the beautiful town of Lindau. And if motivation on how to effect social change could be bottled up in one location, then it would be on Mainau, the beautiful flower island of the Bernadotte family. Picture: Insel Mainau/Peter Allgaier.

If there was a heaven on Earth for scientists, then it would be found in Bavaria in the beautiful town of Lindau. And if motivation on how to effect social change could be bottled up in one location, then it would be on Mainau, the beautiful flower island of the Bernadotte family. Picture: Insel Mainau/Peter Allgaier.

For us young scientists, this was always going to be the conference that would become the yardstick against which all previous and future meetings would be measured. But if our experiences at Lindau during the week were extraordinary, then the events of Mainau on Friday 3rd July 2015 were truly transcendental.

In spite of (or perhaps because of) the challenging world in which we live, young scientists aspire to keep a healthy balance of idealism and pragmatism. We receive education and training. Along the way, we become involved in research that will potentially improve quality of life or man’s understanding of the world. We hope to make a positive difference to society or another person’s life story, help the next generation, and, in doing so, pay forward the kindness provided to us by our own mentors. In the professional world of a developing scientist, this is the great Circle of Life.

For the young scientists, this week was not just about learning from Nobel Laureates and senior scientists how to perform good science and become successful, but also how one should live when one has become successful. We were taught, through the Laureates’ personal examples, to remain humble, always aiming to respect others and achieve a balanced perspective, while continuing one’s work and striving for the betterment of mankind. Throughout the week, the Nobel Laureates allowed us into their world: they gave us their time, and granted us privileged access to their life stories and thoughts. They also conveyed their hopes and concerns for the future. We heard about the important problems of feeding the ever-growing population of the world, supporting science and scientists in Africa, ending child exploitation and supporting their universal right to education. We learnt the importance of an education in science, the need for scientists to communicate effectively, and how this could help society, as a whole, on so many different levels.

 

The Nobel Laureates on stage signing the Mainau Declaration 2015 (Harry Kroto). Photo: L. Wang

The Nobel Laureates on stage signing the Mainau Declaration 2015 (Harry Kroto). Photo: L. Wang

wang2

But Mainau brought all these ideas to a whole new level. There, the Nobel Laureates provided an eternal reminder of the importance of a scientist’s social responsibility. The vision of the Nobel Laureates signing the Mainau Declaration 2015 is something that I will remember forever – walking onto the stage as a group, holding arms, supporting each other, laughing, chatting, smiling as they each waited their turn to sign. These images remain a powerful illustration of the strength of unity, in purpose and conviction.

I felt enormous pride and admiration as Brian Schmidt stood up as spokesperson for the Mainau Declaration 2015, and the solidarity and unity of all four Australian Nobel laureates as they joined an ever-growing number of Nobel Laureates gathered on stage, many of whom I was privileged to talk to during the course of the week. In terms of inspiring social responsibility, few things can motivate a young scientist more than watching one’s heroes united on stage, participating in a cause important to our future and that of our children.

We left Mainau and Lindau, knowing that we had witnessed history in the making – a declaration that will hopefully help steer humanity in the right direction.

And, having been transformed and inspired by this amazing week, we hope to pay forward the amazing opportunity given to us by the Council for the Lindau Nobel Laureate Meetings and the Nobel Laureates – to dedicate ourselves to science and society, now and forever more.

Daily Recap, Friday, 3 July 2015

The last day of the 65th Lindau Nobel Laureate Meeting was certainly a day that produced lasting memories for all who were involved.

36 Nobel Laureates banded together for an appeal to the political leaders of the world – the Mainau Declaration 2015. Here are some impressions:

 

65th Lindau Nobel Laureate Meeting, Lindau, Germany  The Mainau Declaration Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings

65th Lindau Nobel Laureate Meeting, Lindau, Germany
The Mainau Declaration
Picture/Credit: Christian Flemming/Lindau Nobel Laureate Meetings

 

Some of the signatories of the Mainau Declaration 2015 on Climate Change on stage just after the signing. Image: Ch. Flemming/Lindau Nobel Laureate Meetings.

Some of the signatories of the Mainau Declaration 2015 on Climate Change on stage just after the signing. Image: Ch. Flemming/Lindau Nobel Laureate Meetings.

 

19383133301_29c0f774a0_o

Nobel Laureate Stefan Hell signing the Mainau Declaration. Image: Ch. Flemming/Lindau Nobel Laureate Meetings.

For more photos please visit our official FlickR photostream.

 

Blog post of the day:

One day before the Mainau Declaration 2015 was signed Nobel Laureate Brian Schmidt took the time to talk about the goals of the appeal and how it came about.

Click here to read the report

 

Besides the declaration a very interesting panel discussion on science education took place featuring Nobel Peace Prizewinner Kailash Satyarthi, among others. A full-length video of this discussion will be available at our mediatheque shortly.

 

Tweets of the day:

 


This post will conclude the 2015 Daily Recap. #LiNo15 was a great event that brought together some of the world’s most inspiring people. Thank you to all Nobel Laureates, young scientists, guests of honor, media representatives and everyone else who was involved.